

Biologie-Lehrplan SII

Schulinterner Lehrplan des Lise-Meitner-Gymnasiums (Lev.) zum Kernlehrplan für die gymnasiale Oberstufe

Stand: 16.09.2025

Inhalt

1	Rahme	nbedingungen der fachlichen Arbeit	2
2	Entsch	eidungen zum Unterricht	1
	2.1 Un	terrichtsvorhaben	1
	2.2 Üb	ersicht über die Unterrichtsvorhaben	2
	2.2.1	EINFÜHRUNGSPHASE	2
	2.2.2	Qualifikationsphase: Grundkurs	15
	2.2.3	Qualifikationsphase: Leistungskurs	32
	2.3 Gr	undsätze der fachmethodischen und fachdidaktischen Arbeit	57
	2.4 Gr	undsätze der Leistungsbewertung und Leistungsrückmeldung	59
	2.4.1	Beurteilungsbereich: Sonstige Mitarbeit	59
	2.4.2	Beurteilungsbereich: Klausuren	60
	2.4.3	Grundsätze der Leistungsrückmeldung und Beratung:	61
	2.5 Lel	nr- und Lernmittel	62
3	Entsch	eidungen zu fach- und unterrichtsübergreifenden Fragen	63
4	Qualitä	tssicherung und Evaluation	65

1 Rahmenbedingungen der fachlichen Arbeit

Das Lise-Meitner-Gymnasium liegt in Leverkusen direkt am Stadtpark in unmittelbarer Nähe des Fußballstadions und des Bahnhofs Leverkusen-Mitte. Exkursionen im erweiterten Raum Düsseldorf und Köln sind mit öffentlichen Verkehrsmitteln relativ problemlos durchzuführen.

Das Schulgebäude verfügt über 4 Biologiefachräume und 2 Biologiesammlungsräume. Zwei der Fachräume sind mit speziellen Experimentiertischen ausgestattet, die anderen beiden Fachräume sind normal bestuhlt. Einer der Sammlungsräume fungiert als Labor und ist mit vielfältigen Glasgeräten, Chemikalien und weiteren Laborgeräten ausgestattet. Zudem ist der Raum mit einem Brutschrank, 2 Wasserbädern, einem Kühlschrank und einer Spülmaschine bestückt. Der andere Sammlungsraum enthält einen Klassensatz regelmäßig gewarteter und moderner Lichtmikroskope, ein Videomikroskop und vielfältige Fertigpräparate. Zudem befinden sich in der Sammlung Skelette und Schädel verschiedener Tierarten und Skelett- und Schädelnachbildungen von Menschen und Vormenschen. Des Weiteren gibt es eine Vielzahl botanische und zoologische Funktions- und Anschauungsmodelle. Auch DNA-Modelle, Fotosynthese-Experimentierkits und ein Gewässeranalysekoffer gehören zur Ausstattung. Sammlungsleiter der Fachschaft Biologie ist zurzeit Hr. Siebertz. Die Fachkonferenz Biologie stimmt sich bezüglich in der Sammlung vorhandener Gefahrstoffe mit dem Gefahrstoffbeauftragten der Schule (z.Zt. Hr. Seim, CH) ab.

Den Schülerinnen und Schülern stehen ab der Einführungsphase individuelle IPads zur Anwendung im Unterricht zur Verfügung. Über die Nutzung im Unterricht gibt es schulübergreifende Regelungen, die durch Vereinbarungen mit der unterrichtenden Lehrkraft ergänzt werden können. Darüber hinaus steht den Lernenden eine große Schulbibliothek, welche neben Fachliteratur auch mehrere PC-Arbeitsplätze aufweist, zur Verfügung.

Die Fachschaft Biologie am Lise-Meitner-Gymnasium besteht zurzeit aus 13 Fachkollegen und einer Lehramtsanwärterin und trifft sich regelmäßig zu Fachkonferenzen, um die Aufgaben und Ziele des Schulprogramms umzusetzen und die Qualität des Biologieunterrichts zu evaluieren und zu verbessern. Den Fachvorsitz führt derzeit Fr. Lütke. Stellvertreterin ist Fr. Schulte.

Die Lehrerbesetzung und die übrigen Rahmenbedingungen der Schule ermöglichen einen ordnungsgemäßen laut Stundentafel der Schule vorgesehen Biologieunterricht.

In der Oberstufe befinden sich durchschnittlich ca. 110 Schülerinnen und Schüler in jeder Stufe. Das Fach Biologie ist in der Einführungsphase in der Regel mit 3 - 4 Grundkursen vertreten. In der Qualifikationsphase können auf Grund der Schülerwahlen in der Regel 2 - 3 Grundkurse und 1 - 2 Leistungskurse gebildet werden.

Die Verteilung der Wochenstundenzahlen in der Sekundarstufe I und II ist wie folgt:

Jg.	Fachunterricht von 5 bis 6
5	BI (2)
6	BI (2)
	Fachunterricht von 7 bis 9
7	BI (-)
8	BI (2)
9	BI (1)
10	BI (1)
	Fachunterricht in der EF und in der QPh (GK/LK)
EF	BI (3)
Q1	BI (3/5)
Q2	BI (3/5)

Die Unterrichtstaktung am Lise-Meitner-Gymnasium folgt einem 90 Minutenraster.

In den meisten Unterrichtsvorhaben wird den Schülerinnen und Schülern die Möglichkeit gegeben, Schülerexperimente durchzuführen; damit wird eine Unterrichtspraxis aus der Sekundarstufe I fortgeführt. Insgesamt werden überwiegend kooperative, die Selbstständigkeit des Lerners fördernde Unterrichtsformen genutzt, sodass ein individualisiertes Lernen in der Sekundarstufe II kontinuierlich unterstützt wird. Hierzu eignen sich besonders Doppelstunden. Seit der Veröffentlichung des neuen Kernlehrplans steht dessen unterrichtliche Umsetzung im Fokus. Hierzu werden sukzessive exemplarisch konkretisierte Unterrichtsvorhaben und darin eingebettet Überprüfungsformen entwickelt und erprobt.

Der Biologieunterricht soll Interesse an naturwissenschaftlichen Fragestellungen wecken und die Grundlage für das Lernen in Studium und Beruf in diesem Bereich vermitteln. Dabei werden fachlich und bioethisch fundierte Kenntnisse, die Voraussetzung für einen eigenen Standpunkt und für verantwortliches Handeln sind, gefordert und gefördert. Hervorzuheben sind hierbei die Aspekte verantwortungsvoller Umgang mit dem Leben in seiner ganzen Vielfältigkeit, Nachhaltigkeit, Umgang mit dem eigenen Körper und ethische Grundsätze.

Die Fachschaft Biologie kooperiert in einigen Projekten und Exkursionen mit verschiedenen außerschulischen Partnern, so z.B. mit der Currenta AG (z.B. Tag der Artenvielfalt, Schülerlabor), mit Zartbitter e.V. und Profamilia e.V. (z.B. HIV-Aufklärung) und führt z.B. zum Thema Primatenevolution Exkursionen in den Kölner Zoo durch. Nicht nur aber insbesondere im WPII-Bereich bestehen innerschulische Kooperationen mit anderen Fachschaften, wie der Physik und der Chemie.

Folgende Kooperationen bestehen am Lise-Meitner-Gymnasium:

- AIDS-Hilfe Leverkusen
- BayLab (Schülerlabor von BayKomm)
- Currenta AG
- Kölner Zoo / Zooschule

- NaturGut Ophoven
- Profamilia Leverkusen e.V.
- Suchthilfe Leverkusen
- Zartbitter Köln e. V.

2 Entscheidungen zum Unterricht

2.1 Unterrichtsvorhaben

In der nachfolgenden Übersicht über die Unterrichtsvorhaben wird die für alle Lehrerinnen und Lehrer gemäß Fachkonferenzbeschluss verbindliche Verteilung der Unterrichtsvorhaben dargestellt. Die Übersicht dient dazu, für die einzelnen Jahrgangsstufen allen am Bildungsprozess Beteiligten einen schnellen Überblick über Themen bzw. Fragestellungen der Unterrichtsvorhaben unter Angabe besonderer Schwerpunkte in den Inhalten und in der Kompetenzentwicklung zu verschaffen.

Der ausgewiesene Zeitbedarf versteht sich als grobe Orientierungsgröße, die nach Bedarf über- oder unterschritten werden kann. Der schulinterne Lehrplan ist so gestaltet, dass er zusätzlichen Spielraum für Vertiefungen, besondere Interessen von Schülerinnen und Schülern, aktuelle Themen bzw. die Erfordernisse anderer besonderer Ereignisse (z.B. Praktika, Studienfahrten o.Ä.) belässt. Abweichungen über die notwendigen Absprachen hinaus sind im Rahmen des pädagogischen Gestaltungsspielraumes der Lehrkräfte möglich. Sicherzustellen bleibt allerdings auch hier, dass im Rahmen der Umsetzung der Unterrichtsvorhaben insgesamt alle Kompetenzerwartungen des Kernlehrplans Berücksichtigung finden.

2.2 Übersicht über die Unterrichtsvorhaben

2.2.1 EINFÜHRUNGSPHASE

UV Z1: Aufbau und Funkt			Fachschaftsinterne Absprachen
Inhaltsfeld 1: Zellbiologie			Lichtmikroskopie, Präparation und wissenschaftliche Zeichnungen
Zeitbedarf: ca. 24 Unterrichtsstunden à 45 Minuten			werden praktisch durchgeführt
Inhaltliche Schwerpunkte:			Beiträge zu den Basiskonzepten:
 Aufbau der Zelle, Fachlich 	ne Verfahren: Mikroskopie		
			Struktur und Funktion:
Schwerpunkte der Kompeter	nzhereiche:		Kompartimentierung der eukaryotischen Zelle
			- Nompartimenting der editaryotischen Zeite
 Zusammenhänge in lebenden Systemen betrachten (S) Fachspezifische Modelle und Verfahren charakterisieren, auswähler Sachverhalten nutzen (E) Informationen erschließen (K) Informationen aufbereiten (K) 		en und zur Untersuchung von	Individuelle und evolutive Entwicklung: Zelldifferenzierung bei der Bildung von Geweben
Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Die SuS	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
Mikroskopie prokaryotische Zelle eukaryotische Zelle Vielzeller: Zelldifferenzierung und Arbeitsteilung	vergleichen den Aufbau von prokaryotischen und eukaryotischen Zellen (S1, S2, K1, K2, K9). begründen den Einsatz unterschiedlicher mikroskopischer Techniken für verschiedene Anwendungsgebiete (S2, E2, E9, E16, K6). analysieren differenzierte Zelltypen mithilfe mikroskopischer Verfahren (S5, E7, E8, E13, K10).	Welche Strukturen können bei prokaryotischen und eukaryotischen Zellen mithilfe verschiedener mikroskopischer Techniken sichtbar gemacht werden? (6 UStd.) Welche morphologischen Angepasstheiten weisen verschiedene Zelltypen von Pflanzen und Tieren in Bezug auf ihre Funktionen auf? (4 UStd.)	Kontext: System Zelle – Die Zelle als kleinste lebensfähige Einheit + Lichtmikroskopie von differenzierten Tier- und Pflanzenzellen in Geweben zentrale Unterrichtssituationen: Vorwissens-Quiz (Kennzeichen des Lebendigen, Tier- und Pflanzenzelle, Systemebenen, Größe verschiedener Zellen) Mikroskopieren verschiedener Präparate von (Prokaryoten) und Eukaryoten (Tier- und Pflanzenzellen, differenzierte Zellen, z.B. Mundschleimhaut, Elodea, Allium cepa, Banane) mit dem Lichtmikroskop (S1) Vergleich des Grundbauplans von pro- und eukaryotischen Zellen unter Berücksichtigung der Kompartimentierung (Basiskonzept Struktur und Funktion) (S2) Erläuterung des Verfahrens der Lichtmikroskopie und Begründung der Grenzen lichtmikroskopischer Auflösung (K6) fakultativ: Ableitung der Unterschiede zwischen Licht- und Fluoreszenzmikroskopie sowie Elektronenmikroskopie in Bezug

				 auf technische Entwicklung, Art des eingesetzten Präparates, erreichte Vergrößerung und Begrün-dung der unterschiedlichen Einsatzgebiete in der Zellbiologie (E2, E9, K9) Anfertigung wissenschaftlicher Zeichnungen zur Dokumentation und Interpretation der beobachteten Strukturen unter Berücksichtigung der Angepasstheit der Zelltypen (Basiskonzept Struktur und Funktion) und Vergleich mit Fotografien (E13) Mikroskopie von Fertigpräparaten verschiedener Tierzellen im Gewebeverband: Muskelzellen, Nervenzellen, Drüsenzellen (E7, E8) Erläuterung von Aufbau und Funktion von verschiedenen Zellbestandteilen pflanzlicher und tierischer Zellen anhand von Modellen und elektronenmikroskopischen Aufnahmen (S2, K10)
•	Zusammenwirken von Zellbestandteilen Kompartimentierung	erklären Bau und Zusammenwirken der Zellbestandteile eukaryotischer Zellen und erläutern die Bedeutung der Kompartimentierung (S2, S5, K5, K10).	Wie ermöglicht das Zusammenwirken der einzelnen Zellbestandteile die Lebensvorgänge in einer Zelle? (ca. 6 Ustd.)	 Erklärung des Zusammenwirkens von Organellen, die am Membranfluss beteiligt sind (K5) Vergleich des Aufbaus von Mitochondrien und Chloroplasten und Ableitung der jeweiligen Kompartimente (S2) (Buch) Erläuterung der Bedeutung der Kompartimentierung der eukaryotischen Zelle (Basiskonzept Struktur und Funktion) auch im Hinblick auf gegenläufige Stoffwechselprozesse (S5) (kurz)
•	Endosymbiontentheorie	erläutern theoriegeleitet den prokaryotischen Ursprung von Mitochondrien und Chloroplasten (E9, K7).	Welche Erkenntnisse über den Bau von Mitochondrien und Chloroplasten stützen die Endosymbiontentheorie? (ca. 2 Ustd.)	 Kontext: Mitochondrien und Chloroplasten – Nachfahren von Prokaryoten? zentrale Unterrichtssituationen: Analyse der Besonderheiten von Mitochondrien und Chloroplasten (äußere und innere Membran, Vermehrung durch Teilung, Genom, Ribosomen) unter Einbezug proximater Erklärungen und Vergleich mit prokaryotischen Systemen (E9, K7) modellhafte Darstellung des hypothetischen Ablaufs unter Fokussierung auf der Herkunft der Doppelmembran sowie der Aspekte einer Endosymbiose (E9) ultimate Erklärung des prokaryotischen Ursprungs der Mitochondrien und Chloroplasten mithilfe der Endosymbiontentheorie (K7)
•	Vielzeller	vergleichen einzellige und vielzellige Lebewesen und erläutern die jeweiligen Vorteile ihrer Organisationsform (S3, S6, E9, K7, K8).	Welche Vorteile haben einzellige und vielzellige Organisationsformen? (ca. 4 Ustd.)	Kontext: Vielfalt der Organisationsformen von Lebewesen zentrale Unterrichtssituationen:

	 Differenzierung zwischen unterschiedlichen Systemebenen: Moleküle – Zelle – Gewebe – Organ – Organismus (S6) z.B. anhand der Grünalgen Erläuterung der unterschiedlichen Organisationsformen innerhalb der Chlamydomonadales (Grünalgen-Reihe) und Ableitung der Eigenschaften von Vielzellern (Arbeitsteilung, Kommunikation, Fortpflanzung) anhand von Volvox (S3, E9) Diskussion der Vorteile verschiedener Organisationsformen bei Berücksichtigung der Unterschiede zwischen proximaten und ultimaten Erklärungen sowie funktionalen und kausalen Erklärungen (K7, K8)
--	---

UV Z2: Biomembrane	n		Fachschaftsinterne Absprachen
Inhaltsfeld 1: Zellbiologie Zeitbedarf: ca. 22 Unterrichtsstunden à 45 Minuten			ggf. Experimente zu den biochemischen Eigenschaften der Stoffgruppen Experimente zu Diffusion und Osmose
Inhaltliche Schwerpunk	te:		Beiträge zu den Basiskonzepten:
Biochemie der Zelle,	Fachliche Verfahren: Untersuchung von os	smotischen Vorgängen	Information und Kommunikation:
Schwerpunkte der Kom	petenzbereiche:		Prinzip der Signaltransduktion an Zellmembranen
Schwerpunkte der Kompetenzbereiche: Zusammenhänge in lebenden Systemen betrachten (S) Fachspezifische Modelle und Verfahren charakterisieren, auswählen und zur Untersuchung von Sachverhalten nutzen (E) Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E) Merkmale wissenschaftlicher Aussagen und Methoden charakterisieren und reflektieren (E)			Steuerung und Regelung: Prinzip der Homöostase bei der Osmoregulation
Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Die SuS	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
Stoffgruppen: Kohlenhydrate, Lipide, Proteine		Wie hängen Strukturen und Eigenschaften der Moleküle des Lebens zusammen? (ca. 4 Ustd.)	 Kontext: Moleküle des Lebens – biochemische Grundlagen für die Erklärung zellulärer Phänomene zentrale Unterrichtssituationen: Reaktivierung von Vorwissen aus der Chemie → Sek I (Elemente, kovalente Bindungen, polare Bindungen, Wasser als polares Molekül → Bioskop: S. 30ff. ggf. Proteine erst UV Z4) fakultativ: Planung und Durchführung von Experimenten zur Löslichkeit verschiedener Stoffe in Wasser, Ethanol und Waschbenzin zur Ableitung der Begriffsdefinitionen von hydrophil und hydrophob Erläuterung des Aufbaus und der Eigenschaften von Kohlenhydraten, Lipiden und Proteinen sowie der Nukleinsäuren auch unter Berücksichtigung der Variabilität durch die Kombination von Bausteinen (K6)
Biomembranen: Transport, Prinzip der Signaltransduktion, Zell-Zell- Erkennung	stellen den Erkenntniszuwachs zum Aufbau von Biomembranen durch technischen Fortschritt und Model- lierungen an Beispielen dar (E12, E15–17).	Wie erfolgte die Aufklärung der Struktur von Biomembranen und welche Erkenntnisse führ- ten zur Weiterentwicklung der jeweiligen Modelle? (ca. 6 Ustd.)	Kontext: Modellentwicklung zum Aufbau von Biomembranen zentrale Unterrichtssituationen: Fakultativ: Rotkohlversuch: Bestandteile von Biomembranen

 physiologische Anpassungen: Homöostase Untersuchung von osmotischen Vorgängen 	erklären experimentelle Befunde zu Diffusion und Osmose mithilfe von Modellvorstellungen (E4, E8, E10–14). erläutern die Funktionen von Biomembranen anhand ihrer stofflichen Zusammensetzung und räumlichen Organisation (S2, S5–7, K6). erklären die Bedeutung der Homöostase des osmotischen Werts für zelluläre Funktionen und leiten mögliche Auswirkungen auf den Organismus ab (S4, S6, S7, K6, K10).	Wie können Zellmembranen einerseits die Zelle nach außen abgrenzen und andererseits doch durchlässig für Stoffe sein? (ca. 8 Ustd.)	 Ableitung des Modells von Gorter und Grendel aus der Analyse von Erythrocyten-Membranen Erklärung der Veränderungen zum Sandwich-Modell von Davson und Danielli aufgrund chemischer Analysen und elektronenmikroskopischer Bilder von Zellmembranen Erläuterung des Fluid-Mosaik-Modells anhand folgender Analysen durch Singer und Nicolson und Bestätigung durch die Gefrierbruch-Methode so-wie Zellfusions-Experimente von Frye und Edidin Diskussion der Möglichkeiten und Grenzen der einzelnen Membranmodelle auch anhand selbst hergestellter Membranmodelle (E12) Reflektion des Erkenntnisgewinnungsprozesses ausgehend vom technischen Fortschritt der Analyseverfahren und Weiterentwicklung des Membranmodells zum modernen Fluid-Mosaik-Modell (E15–17) Kontext: Abgrenzung und Austausch – (k)ein Widerspruch? zentrale Unterrichtssituationen: Hypothesengeleitete Planung, Durchführung und Auswertung von Experimenten zu Diffusion und Osmose, sodass ausgehend von der Beschreibung der Phänomene anhand von Modellvorstellungen zum Aufbau von Biomembranen die experimentellen Befunde erklärt werden können (E4, E8) Einbezug von Experimenten zur Diffusion, zur qualitativen und quantitativen Ermittlung von Daten zur Osmose, zur mikroskopischen Analyse osmotischer Prozesse bei in pflanzlichen Geweben (E10, E11, E14) Erläuterung von Modellvorstellungen zu verschiedenen Transportprozessen durch Biomembranen unter Berücksichtigung von Kanalproteinen, Carrierproteinen und Transport durch Vesikel (S7, E12, E13) Ableitung der Eigenschaften der Transportsysteme auch im Hinblick auf energetische Aspekte (aktiver und passiver Transport) (S5, K6) Erfläuterung der Bedeutung zellulärer Transportsysteme an einem Beispiel, z. B. Darmepithelzellen, Drüsenzellen und der Blut-Hirnschranke (S6, S7) Diskussion der Bedeutung der Osmoregulation für Einzeller in Süß- bzw. Salzwasser unter
--	--	---	---

•	erläutern die Funktionen von Biomembranen anhand ihrer stofflichen Zusammensetzung und räumlichen Organisation (S2, S5–7, K6).	Wie können extrazelluläre Botenstoffe, wie zum Beispiel Hormone, eine Reaktion in der Zelle auslösen? (ca. 2 Ustd.)	Osmoregulation) und Anwendung auf die Homöostase bei der Osmoregulation von Süß- und Salzwasserfischen (S4, S7, K10) Kontext: Signaltransduktion z.B. Insulin-Glycogen-System zentrale Unterrichtssituationen: Aktivierung von Vorwissen aus der → Sek I zur Wirkung des Hormons Insulin auf die Glucosekonzentration im Blut Erläuterung des Schlüssel-Schloss-Prinzips am Beispiel der Bindung des Insulins an den Insulinrezeptor und Erarbeitung der Signaltransduktion sowie der ausgelösten Signalkette in der Zielzelle (S2, S5) Ableitung der Auswirkungen des Insulins auf die Glucosekonzentration im Blut unter Berücksichtigung des Basiskonzepts Information und Kommunikation (Prinzip der Signaltransduktion an Zellmembranen) (S6, S7)
		Welche Strukturen sind für die Zell-Zell-Erkennung in einem Organismus verantwortlich? (ca. 2 Ustd.)	 Kontext: Organtransplantation oder ABO-Blutgruppensystem (SI) zentrale Unterrichtssituationen: Aktivierung von Vorwissen aus der → Sek I zur Immunantwort auf körperfremde Organe Ableitung der Vielzahl von Oberflächenstrukturen einer Zelle aufgrund der Variationsmöglichkeiten von Glykolipiden und Glykoproteinen und Erklärung der Spezifität dieser Oberflächenstrukturen (S2) Erläuterung der Möglichkeiten der Zell-Zell-Erkennung aufgrund spezifischer Bindung von Oberflächenstrukturen nach dem Schüssel-Schloss-Prinzip und Unterscheidung zwischen körpereigenen und körperfremden Oberflächenstrukturen (S5, S7) Diskussion der Bedeutung von Zell-Zell-Erkennung in Bezug auf Reaktionen des Immunsystems sowie die Bildung von Zellkontakten in Geweben unter Berücksichtigung der Basiskonzepte Struktur und Funktion sowie Information und Kommunikation (S5, K6)

UV	Z3: Mitose, Zellzy	klus und Meiose		Fachschaftsinterne Absprachen
Inhaltsfeld 1: Zellbiologie			ggf. Mikroskopie von Wurzelspitzen (<i>Allium cepa</i>)	
Zeitbedarf: ca. 22 Unterrichtsstunden à 45 Minuten				
Inh	altliche Schwerpunk	te:		Beiträge zu den Basiskonzepten:
-	Genetik der Zelle, Fa	achliche Verfahren: Analyse von Familienst	ammbäumen	
Sc	nwerpunkte der Kom	petenzbereiche:		Stoff- und Energieumwandlung:
•	Informationen austau	uschen und wissenschaftlich diskutieren (K)	■ Energetischer Zusammenhang zwischen auf- und abbauendem
•	Sachverhalte und Inf	ormationen multiperspektivisch beurteilen	(B)	Stoffwechsel
•	Kriteriengeleitet Meir	nungen bilden und Entscheidungen treffen	(B)	
-	Entscheidungsproze	sse und Folgen reflektieren (B)		
Inh	altliche Aspekte	Konkretisierte Kompetenzerwartungen Die SuS…	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
•	Mitose:	erklären die Bedeutung der	Wie verläuft eine	Kontext:
	Chromosomen, Cytoskelett Zellzyklus:	Regulation des Zellzyklus für Wachstum und Entwicklung (S1, S6, E2, K3).	kontrollierte Vermehrung von Körperzellen? (ca. 6 Ustd.)	Wachstum bei Vielzellern geschieht durch Zellvermehrung und Zellwachstum
	Regulation			zentrale Unterrichtssituationen:
				 ■ Reaktivierung von Vorwissen zur Mitose und zum Zellzyklus (→ Sek I) ■ fakultativ: Mikroskopieren von Präparaten einer Wurzelspitze von Allium cepa, Vergleich von Chromosomenanordnungen im Zellkern mit modellhaften Abbildungen, Schätzung der Häufigkeit der verschiedenen Phasen (Mitose und Interphase) im Präparat ■ Erläuterung der Phasen des Zellzyklus, dabei Fokussierung auf die Entstehung genetisch identischer Tochterzellen. Berücksichtigung des Basiskonzepts Struktur und Funktion: Abhängigkeit der Chromatin-Struktur von der jeweiligen Funktion ■ Erstellung eines Schemas zum Zellzyklus als Kreislauf mit Darstellung des Übergangs von Zellen in die G0-Phase. Dabei Unterscheidung der ruhenden Zellen und Beachtung unterschiedlich langer G0-Phasen verschiedener Zelltypen: nie wieder sich teilende Zellen (wie Nervenzellen) und Zellen, die z. B. nach Verletzung wieder in die G1-Phase zurückkehren können ■ Erläuterung der Regulation des Zellzyklus durch Signaltransduktion: ■ Wachstumsfaktor und wachstumshemmender Faktor wirken an bestimmten Kontrollpunkten des Zellzyklus. (Basiskonzept:

	begründen die medizinische Anwendung von Zellwachstumshemmern (Zytostatika) und nehmen zu den damit verbundenen Risiken Stellung (S3, K13, B2, B6–9).	Wie kann unkontrolliertes Zellwachstum gehemmt werden und welche Risiken sind mit der Behandlung verbunden? (ca. 2 Ustd.)	Information und Kommunikation), Berücksichtigung des Basiskonzepts Steuerung und Regelung: Kontrolle des Zellzyklus Mitose: https://bridge.klett.de/MMO-VC7CALTAIZ/ Empfehlung: click and learn: https://media.hhmi.org/biointeractive/click/cellcycle/> Q2? fakultativ: Bedeutung der Apoptose (programmierter Zelltod) Kontext: Behandlung von Tumoren mit Zytostatika zentrale Unterrichtssituationen: Definition des Krankheitsbildes Krebs und Bedeutung von Tumoren Recherche zu einem Zytostatikum und Erstellung eines Infoblattes mit Wirkmechanismus und Nebenwirkungen zur Erläuterung der Wirkungsweise (das Infoblatt sollte auch fachübergreifende Aspekte beinhalten) konstruktiver Austausch über die Ergebnisse, Fokussierung auf die unspezifische Wirkung von Zytostatika (→ Ausblick auf Möglichkeiten personalisierter Medizin) (K13) Abschätzung von Nutzen und Risiken einer Zytostatikatherapie basierend auf den erhaltenen Ergebnissen, dabei sollen unterschiedliche Perspektiven eingenommen und Handlungsoptionen berücksichtigt werden (B8)
•	diskutieren kontroverse Positionen zum Einsatz von embryonalen Stammzellen (K1-4, B1-6, B10-12).	Welche Ziele verfolgt die Forschung mit embryonalen Stammzellen und wie wird diese Forschung ethisch bewertet? (ca. 4 Ustd.)	 Kontext: Unheilbare Krankheiten künftig heilen? zentrale Unterrichtssituationen: Beschreibung der Pluripotenz embryonaler Stammzellen und Erklärung der Bedeutung im Zusammenhang mit dem Zellzyklus sowie der Entstehung unterschiedlicher Gewebe Recherche von Zielen der embryonalen Stammzellforschung [3-6] Identifikation der Gründe für die besondere ethische Relevanz des Einsatzes von embryonalen Stammzellen Benennung von Werten, die verschiedenen Positionen zugrunde liegen können und Beurteilung von Interessenlagen (B4, B5) Entwicklung von notwendigen Bewertungskriterien, um zu einem begründeten Urteil zu kommen. Reflexion von kurz- und langfristigen Folgen von Entscheidungen sowie Reflexion des Bewertungsprozesses (B10, B11) Hinweis: Der Fokus liegt hier nicht auf der detaillierten Kenntnis von Stammzelltypen, sondern auf der Frage, welche Argumente für und gegen die Nutzung von embryonalen Stammzellen für die

 Karyogramm: Genommutationen, Chromosomen- mutationen Meiose: 	erläutern Ursachen und Auswirkungen von Chromosomen- und Genommutationen (S1, S4, S6, E11, K8, K14).	ionen, Auswirkungen von Chromosomen- und Genommutationen (S1, S4, S6, Keimzellbildung un	Nach welchem Mechanismus erfolgt die Keimzellbildung und welche Mutationen können	Medizin möglich sind. Voraussetzung dafür ist im Wesentlichen das Wissen um die Pluripotenz der embryonalen Stammzellen. (Material: Manuel) Kontext: Karyogramm einer an Trisomie 21 erkrankten Person zentrale Unterrichtssituationen:
Rekombination		dabei auftreten? (ca. 6 Ustd.)	 Aktivierung von Vorwissen: Beschreibung und Analyse des Karyogramms einer Person mit Trisomie 21 unter Verwendung der bisher gelernten Fachbegriffe (→Sek I) Vergleich von Karyogrammen bei freier Trisomie 21 und Translokationstrisomie zur Identifikation von Chromosomen- und Genommutationen in Karyogrammen: Beschreibung der Unterschiede, Entwicklung von Fragestellungen und Vermutungen zu den Abweichungen Erläuterung von Ursachen und Auswirkung der Genommutation Definition der unterschiedlichen Formen von Chromosomenmutationen Reaktivierung des Vorwissens (→Sek I: Meiose und Befruchtung,) Vertiefende Betrachtung der Meiose Erläuterung der Ursachen der Trisomie 21 Betrachtung der Unterschiede zur Mitose, vor allem im Hinblick auf die Reduktion des Chromosomensatzes bei der Gametenreifung. Herausstellung der Vorteile sexueller Fortpflanzung: interchromosomale und intrachromosomale Rekombination (S6) 	
 Analyse von Familienstamm- bäumen 	wenden Gesetzmäßigkeiten der Vererbung auf Basis der Meiose bei der Analyse von Familienstammbäumen an (S6, E1–3, E11, K9, K13).	Inwiefern lassen sich Aussagen zur Vererbung genetischer Erkrankungen aus Familienstammbäumen ableiten? (ca. 4 Ustd.)	 Kontext: Familienfoto zeigt phänotypische Variabilität unter Geschwistern zentrale Unterrichtssituationen: Aktivierung des Vorwissens zu genetischer Verschiedenheit homologer Chromosomen Modellhafte Darstellung der Rekombinationsmöglichkeiten durch Reduktionsteilung und Befruchtung, Klärung des Zusammenhangs zwischen Meiose und Erbgang, dabei Berücksichtigung der verschiedenen Systemebenen Problematisierung der phänotypischen Ausprägung bei Heterozygotie Kontext: 	

Familienberatung mithilfe der Analyse eines Familienstammbaums zu einem genetisch bedingten Merkmal
zentrale Unterrichtssituationen:
 Aktivierung von Vorwissen: Regeln der Vererbung (Gen- und Allelbegriff, Familienstammbäume) (→Sek I) Analyse von Familienstammbäumen, dabei Beachtung der Schritte der naturwissenschaftlichen Erkenntnisgewinnung Verbindlich: Verwendung der Symbole XA und für Xachromosomale Erbgänge. Reihenfolge bei der Analyse: Dominant oder rezessiv, danach autosomal oder gonosomal Schwerpunkt: Analyse von Dreier-Konstellationen (Vater-Mutter-Kind). Ermittlung der Wahrscheinlichkeit für eine Erkrankung in Abhängigkeit des Genotyps der Eltern auf Grundlage der Möglichkeiten interchromosomaler Rekombination

U۱	/ Z4: Energie, Stoffw	echsel und Enzyme		Fachschaftsinterne Absprachen
Inhaltsfeld 1: Zellbiologie				
Zeitbedarf: ca. 24 Unterrichtsstunden à 45 Minuten				
Inł	naltliche Schwerpunkte):		Beiträge zu den Basiskonzepten:
•	Physiologie der Zelle, I	Fachliche Verfahren: Untersuchung von Eı	nzymaktivitäten	
Sc	hwerpunkte der Kompe	etenzbereiche:		Stoff- und Energieumwandlung:
•	Erkenntnisprozesse ur	nd Ergebnisse interpretieren und reflektiere	en (E)	Energetischer Zusammenhang zwischen auf- und abbauendem
•	Informationen aufberei	iten (K)Entscheidungsprozesse und Folger	n reflektieren (B)	Stoffwechsel
Inf	naltliche Aspekte	Konkretisierte Kompetenzerwartungen Die SuS	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
•	Anabolismus und	beschreiben die Bedeutung des	Welcher Zusammenhang	Kontext:
	Katabolismus Energieumwandlung:	ATP-ADP-Systems bei auf- und abbauenden Stoffwechselprozessen	besteht zwischen	"Du bist, was du isst" - Umwandlung von Nahrung in körpereigene
	ATP-ADP-System	(S5, S6).	aufbauendem und abbauendem Stoffwechsel	Substanz
			in einer Zelle stofflich und	zentrale Unterrichtssituationen:
			energetisch? (ca. 6 Ustd.)	 Aktivierung von Vorwissen (→ Sek I, EF.1) durch Analyse einer Nährwerttabelle: Zusammenhang zwischen Nahrungsbestandteilen und Zellinhaltsstoffen Erstellung eines vereinfachten Schemas zum katabolen und anabolen Stoffwechsel, dabei Verdeutlichung des energetischen Zusammenhangs von abbauenden (exergonischen) und aufbauenden (endergonischen) Stoffwechselwegen, dabei Berücksichtigung der Abgrenzung von Alltags- und Fachsprache Verdeutlichung des Grundprinzips der energetischen Kopplung durch Energieüberträger Erläuterung des ATP-ADP-Systems unter Verwendung einfacher Modellvorstellungen: ATP als Energieüberträger
•	Energieumwandlung: Redoxreaktionen			 Kontext: "Chemie in der Zelle"– Redoxreaktionen ermöglichen den Aufbau und Abbau von Stoffen zentrale Unterrichtssituationen: Aktivierung von Vorwissen (→Sek I Chemie): Redoxreaktion als Elektronenübertragungsreaktion, Donator-Akzeptor-Prinzip, Energieumsatz

			 Herstellen eines Zusammenhangs von exergonischer Oxidation und Katabolismus sowie endergonischer Reduktion und Anabolismus Erläuterung des (NADH+H+)-NAD+-Systems und die Bedeutung von Reduktionsäquivalenten für den Stoffwechsel Vervollständigung des Schaubildes zum Zusammenhang von abbauendem und aufbauendem Stoffwechsel durch Ergänzung des (NADH+H+)-NAD+-Systems und des ATP-ADP-Systems. Dabei Herausstellung des Recyclings der Trägermoleküle und der Kopplung von Stoffwechselreaktionen
■ Enzyme: Kinetik	erklären die Regulation der Enzym- aktivität mithilfe von Modellen (E5, E12, K8, K9).	Wie können in der Zelle biochemische Reaktionen reguliert ablaufen?	Kontext: Enzyme ermöglichen Reaktionen bei Körpertemperatur.
		(ca. 18 Ustd.)	zentrale Unterrichtssituationen:
	(ggf. hier Proteine, wenn nicht bereits bei UV-Z2)		 z. B.: Demonstrationsexperiment zur Verbrennung eines Zuckerwürfels mit und ohne Asche. Definition des Katalysators und Veranschaulichung der Wirkung im Energiediagramm. Erarbeitung der Merkmale von Enzymen als Proteine (→ EF.1) mit spezifischer Raumstruktur und ihrer Eigenschaft als Biokatalysatoren Herstellen des Zusammenhangs mit Stoffwechselreaktionen im Organismus und Hervorheben der Bedeutung von kontrollierter Stoffumwandlung durch Zerlegung in viele Teilschritte Erarbeitung des Prinzips von Enzymreaktionen, dabei Berücksichtigung von Enzymeigenschaften wie Spezifität und Sättigung und Berücksichtigung des Schlüssel-Schloss-Prinzips (Basiskonzept Struktur und Funktion) Entwicklung einer Modellvorstellung als geeignete Darstellungsform (E12, K9)
 Untersuchung von Enzymaktivitäten 	entwickeln Hypothesen zur Abhängigkeit der Enzymaktivität		Kontext:
	von verschiedenen Faktoren und		Die Enzymaktivität ist abhängig von Umgebungsbedingungen.
	überprüfen diese mit experimentellen Daten (E2, E3, E6,		zentrale Unterrichtssituationen:
	E9, E11, E14). beschreiben und interpretieren Diagramme zu enzymatischen Reaktionen (E9, K6, K8, K11).		 Entwicklung von Hypothesen zur Abhängigkeit der Enzymaktivität von der Substratkonzentration (Sättigung) und der Temperatur (RGT-Regel, Denaturierung von Proteinen z.B. bei Fieber), Überprüfung durch Auswertung von Experimenten, wenn möglich selbst durchgeführt (E11, E14) □ Q Ökologie Anwendung der Kenntnisse zur Enzymaktivität auf die Auswirkungen eines weiteren Faktors wie etwa dem pH-Wert z. B. von Verdauungsenzymen

		 Interpretation grafischer Darstellungen zur Enzymaktivität, hierbei Fokussierung auf die korrekte Verwendung von Fachsprache und Vermeidung von Alltagssprache und ggf. Korrektur finaler Erklärungen (K6, K8) fakultativ: Enzymaktivität in Abhängigkeit von der Salinität der Umgebung, Bezug zur Homöostase möglich (→ Osmoregulation).
■ Enzyme: Regulation	erklären die Regulation der Enzymaktivität mithilfe von Modellen (E5, E12, K8, K9).	 Kontext: "Alkohol verdrängt Alkohol": Eine Methanol-Vergiftung kann mit Ethanol behandelt werden. zentrale Unterrichtssituationen: Erweiterung der Modellvorstellung zu Enzymen durch die Darstellung der kompetitiven Hemmung (E12) Erläuterung der Modellvorstellung zur allosterischen Hemmung und Beurteilung von Grenzen der Modellvorstellungen Erarbeitung der Enzymaktivität durch kompetitive und allosterische Hemmung anhand von Diagrammen (K9) Erläuterung der Aktivierung von Enzymen und die Bedeutung von Cofaktoren [2], Beschreibung einer Reaktion mit ATP und ggf. NADH+H+ als Cofaktor unter Nutzung modellhafter Darstellungen, dabei Rückbezug zur Darstellung des Zusammenhangs von katabolen und anabolen Stoffwechselwegen. [1]

2.2.2 Qualifikationsphase: Grundkurs

UV GK-N1: Informationsübertragung durch Nervenzellen	
Inhaltsfeld 2: Neurobiologie	
Zeitbedarf: ca. 20 Unterrichtsstunden à 45 Minuten	
Inhaltliche Schwerpunkte:	Beiträge zu den Basiskonzepten
Grundlagen der Informationsverarbeitung,	Struktur und Funktion:
Fachliche Verfahren: Potenzialmessungen	Schlüssel-Schloss-Prinzip bei Transmitter und Rezeptorprotein
Schwerpunkte der Kompetenzbereiche:	Stoff- und Energieumwandlung:
Zusammenhänge in lebenden Systemen betrachten (S)	Energiebedarf des neuronalen Systems
Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E)	Information und Kommunikation:
Kriteriengeleitet Meinungen bilden und Entscheidungen treffen (B)	Codierung und Decodierung von Information an Synapsen
	Steuerung und Regelung: Positive Rückkopplung bei der Entstehung von Aktionspotenzialen
	1 oslave Nackkoppiding bei der Entstehding von Aktionspotenzialen
	Individuelle und evolutive Entwicklung:
	Zelldifferenzierung am Beispiel der Myelinisierung von Axonen bei Wirbeltieren

	Konkretisierte Kompetenzerwartungen		Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
Inhaltliche Aspekte	Schülerinnen und Schüler	Sequenzierung: Leitfragen	
 Bau und Funktionen von Nervenzellen: Ruhepotenzial 	erläutern am Beispiel von Neuronen den Zusammenhang zwischen Struktur und Funktion (S3, E12).	Wie ermöglicht die Struktur eines Neurons die Aufnahme und Weitergabe von Informationen?	
		(ca. 12 Ustd.)	
	entwickeln theoriegeleitet Hypothesen zur Aufrechterhaltung und Beeinflussung des Ruhepotenzials (S4, E3).		
Bau und Funktionen von Nerven-zellen: Aktionspotenzial	erklären Messwerte von Potenzialänderungen an Axon und Synapse mithilfe der zugrundeliegenden molekularen		

	Konkretisierte Kompetenzerwartungen		Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
Inhaltliche Aspekte	Schülerinnen und Schüler	Sequenzierung: Leitfragen	
Potenzialmessung en	Vorgänge (S3, E14).		
Bau und Funktionen von Nervenzellen: Erregungsleitung	vergleichen kriteriengeleitet kontinuierliche und saltatorische Erregungsleitung und wenden die ermittelten Unterschiede auf neurobiologische Fragestellungen an (S6, E1–3).		
Synapse: Funktion der erregenden chemischen Synapse, neuromuskuläre Synapse	erklären die Erregungsübertragung an einer Synapse und erläutern die Auswirkungen exogener Substanzen (S1, S6, E12, K9, B1, B6).	Wie erfolgt die Informationsweitergabe zur nachgeschalteten Zelle und wie kann diese beeinflusst werden? (ca. 8 Ustd.)	
	erklären Messwerte von Potenzialänderungen an Axon und Synapse mithilfe der zugrundeliegenden molekularen Vorgänge (S3, E14).		
Stoffeinwirkung an Synapsen	nehmen zum Einsatz von exogenen Substanzen zur Schmerzlinderung Stellung (B5– 9).		

UV GK-S1: Energieumwandlung in lebenden Systemen

Inhaltsfeld 3: Stoffwechselphysiologie

Zeitbedarf: ca. 5 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Grundlegende Zusammenhänge von Stoffwechselwegen

Schwerpunkte der Kompetenzbereiche:

Zusammenhänge in lebenden Systemen betrachten (S)

Beiträge zu den Basiskonzepten

Struktur und Funktion:

Kompartimentierung ermöglicht gegenläufige Stoffwechselprozesse zeitglich in einer Zelle

Stoff- und Energieumwandlung: Energetische Kopplung der Teilreaktionen von Stoffwechselprozessen

Steuerung und Regelung:

Negative Rückkopplung in mehrstufigen Reaktionswegen des Stoffwechsels

Individuelle und evolutive Entwicklung:

Zelldifferenzierung bei fotosynthetisch aktiven Zellen

	Ko	onkretisierte Kompetenzerwartungen		Didaktisch-methodische Anmerkungen und Empfehlungen
Inhaltliche A	pekte Sc	chülerinnen und Schüler	Sequenzierung: Leitfragen	
Energieumw ng	(des abbauenden	Wie wandeln Organismen Energie aus der Umgebung in	
Energieentw	rtuna	aerohen Redingungen dar und	nutzbare Energie um?	
 Zusammenh von aufbaue und abbauer Stoffwechse 	idem	erläutern diese hinsichtlich der Stoff- und Energieumwandlung (S1, S7, K9).	(ca. 5 Ustd)	
ATP-ADP-S	stem			
Stofftransporzwischen de Kompartime	1			
Redoxreaktion und Redoxäquiva				

UV GK-S2: Glucosestoffwechsel – Energiebereitstellung aus Nährstoffen

Inhaltsfeld 3: Stoffwechselphysiologie

Zeitbedarf: ca. 11 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Grundlegende Zusammenhänge von Stoffwechselwegen

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Informationen erschließen (K)
- Kriteriengeleitet Meinungen bilden und Entscheidungen treffen (B)

Beiträge zu den Basiskonzepten

Struktur und Funktion:

Kompartimentierung ermöglicht gegenläufige Stoffwechselprozesse zeitglich in einer Zelle

Stoff- und Energieumwandlung:

Energetische Kopplung der Teilreaktionen von Stoffwechselprozessen

Steuerung und Regelung:

Negative Rückkopplung in mehrstufigen Reaktionswegen des Stoffwechsels

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
 Feinbau Mitochondrium Stoff- und Energiebilanz von Glykolyse, oxidativer Decarboxylierung, Tricarbonsäure-zyklus und Atmungskette 	stellen die wesentlichen Schritte des abbauenden Glucosestoffwechsels unter aeroben Bedingungen dar und erläutern diese hinsichtlich der Stoff- und Energieumwandlung (S1, S7, K9).	Wie kann die Zelle durch den schrittweisen Abbau von Glucose nutzbare Energie bereitstellen? (ca. 6 Ustd.)	
 Chemiosmotische ATP-Bildung 			
Stoffwechselregulation auf Enzymebene	 erklären die regulatorische Wirkung von Enzymen in mehrstufigen Reaktionswegen des Stoffwechsels (S7, E1–4, E11, E12). nehmen zum Konsum eines ausgewählten Nahrungsergänzungs-mittels unter stoffwechselphysiologischen Aspekten Stellung (S6, K1–4, B5, B7, B9). 	Wie beeinflussen Nahrungsergänzungsmittel als Cofaktoren den Energiestoffwechsel? (ca. 5 Ustd.)	

UV GK-S3: Fotosynthese – Umwandlung von Lichtenergie in nutzbare Energie

Inhaltsfeld 3: Stoffwechselphysiologie

Zeitbedarf: ca. 18 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Grundlegende Zusammenhänge bei Stoffwechselwegen, Aufbauender Stoffwechsel,

Fachliche Verfahren: Chromatografie

Schwerpunkte der Kompetenzbereiche:

- Biologische Sachverhalte betrachten (S)
- Fachspezifische Modelle und Verfahren charakterisieren, auswählen und zur Untersuchung von Sachverhalten nutzen (E)
- Informationen aufbereiten (K)

Beiträge zu den Basiskonzepten

Struktur und Funktion:

Kompartimentierung ermöglicht gegenläufige Stoffwechselprozesse zeitglich in einer Zelle

Stoff- und Energieumwandlung:

Energetische Kopplung der Teilreaktionen von Stoffwechselprozessen

Steuerung und Regelung:

Negative Rückkopplung in mehrstufigen Reaktionswegen des Stoffwechsels

Individuelle und evolutive Entwicklung:

Zelldifferenzierung bei fotosynthetisch aktiven Zellen

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
Funktionale Angepasstheiten: Blattaufbau	erklären funktionale Angepasstheiten an die fotoautotrophe Lebensweise auf verschiedenen Systemebenen (S4–S6, E3, K6–8).	Welche Blattstrukturen sind für die Fotosynthese von Bedeutung? (ca. 4 Ustd.)	
 Funktionale Angepasstheiten: Absorptionsspektrum von Chlorophyll, Wirkungsspektrum, Feinbau Chloroplast 	erklären das Wirkungsspektrum der Fotosynthese mit den durch Chromatografie identifizierten Pigmenten (S3, E1, E4, E8, E13).	Welche Funktionen haben Fotosynthesepigmente? (ca. 3 Ustd.)	Chromatographie
Chromatografie			
Chemiosmotische ATP-Bildung Zusammenhang von	erläutern den Zusammenhang zwischen Primär- und Sekundärreaktionen der Fotosynthese aus stofflicher und	Wie erfolgt die Umwandlung von Lichtenergie in chemische Energie?	

		Konkretisierte Kompetenzerwartungen		Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
•	Inhaltliche Aspekte	Schülerinnen und Schüler	Sequenzierung: Leitfragen	
	Primär- und Sekundärreaktionen,	energetischer Sicht (S2, S7, E2, K9).	(ca. 7 Ustd.)	
•	Calvin-Zyklus: Fixierung, Reduktion, Regeneration			
•	Abhängigkeit der Fotosyntheserate von abiotischen Faktoren	analysieren anhand von Daten die Beeinflussung der Fotosyntheserate durch abiotische Faktoren (E4–11).	Von welchen abiotischen Faktoren ist die autotrophe Lebensweise von Pflanzen abhängig? (ca. 4 Ustd.)	Fotosynthese-Experimente (mit Kabomba)

UV GK-Ö1: Angepasstheiten von Lebewesen an Umweltbedingungen

Inhaltsfeld 4: Ökologie

Zeitbedarf: ca. 16 Unterrichtstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Strukturen und Zusammenhänge in Ökosystemen, Fachliche Verfahren: Erfassung ökologischer Faktoren und qualitative Erfassung von Arten in einem Areal

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Fragestellungen und Hypothesen auf Basis von Beobachtungen und Theorien entwickeln (E)
- Fachspezifische Modelle und Verfahren charakterisieren, auswählen und zur Untersuchung von Sachverhalten nutzen (E)
- Informationen aufbereiten (K)

Beiträge zu den Basiskonzepten

Struktur und Funktion:

Kompartimentierung in Ökosystemebenen

Steuerung und Regelung:

Positive und negative Rückkopplung ermöglichen physiologische Toleranz

Individuelle und evolutive Entwicklung:

Angepasstheit an biotische und abiotische Faktoren

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
Biotop und Biozönose: biotische und abiotische Faktoren.	erläutern das Zusammenwirken von abiotischen und biotischen Faktoren in einem Ökosystem (S5–7, K8).	Welche Forschungsgebiete und zentrale Fragestellungen bearbeitet die Ökologie? (ca. 3 Ustd.)	
 Einfluss ökologischer Faktoren auf Organismen: Toleranzkurven 	untersuchen auf der Grundlage von Daten die physiologische und ökologische Potenz von Lebewesen (S7, E1–3, E9, E13).	Inwiefern bedingen abiotische Faktoren die Verbreitung von Lebewesen? (ca. 5 Ustd.)	
 Intra- und interspezifische Beziehungen: Konkurrenz 	analysieren die Wechselwirkungen zwischen Lebewesen hinsichtlich intra- und interspezifischer Beziehungen (S4, S7, E9, K6–K8).	Welche Auswirkungen hat die Konkurrenz um Ressourcen an realen Standorten auf die Verbreitung von Arten?	
 Einfluss ökologischer Faktoren auf 	erläutern die ökologische Nische als Wirkungsgefüge (S4, S7, E17, K7,	(ca. 5 Ustd.)	

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
Organismen: ökologische Potenz	K8).		
 Ökologische Nische Interspezifische Beziehungen: Parasitismus, Symbiose, Räuber- Beute-Beziehungen 	analysieren Wechselwirkungen zwischen Lebewesen hinsichtlich intra- oder interspezifischer Beziehungen (S4, S7, E9, K6–K8).	In welcher Hinsicht stellen Organismen selbst einen Umweltfaktor dar? (ca. 5 Ustd.)	

UV GK-Ö2: Wechselwirkungen und Dynamik in Lebensgemeinschaften

Inhaltsfeld 4: Ökologie

Zeitbedarf: ca. 9 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Strukturen und Zusammenhänge in Ökosystemen, Einfluss des Menschen auf Ökosysteme, Nachhaltigkeit, Biodiversität

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Informationen aufbereiten (K)
- Informationen austauschen und wissenschaftlich diskutieren (K)
- Sachverhalte und Informationen multiperspektivisch beurteilen (B)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
 Ökosystemmanagem ent: Ursache- Wirkungszusammen hänge, Erhaltungs- und Renaturierungsmaß- nahmen, 	 bestimmen Arten in einem ausgewählten Areal und begründen ihr Vorkommen mit dort erfassten ökologischen Faktoren (E3, E4, E7– 9, E15, K8). 	Wie können Zeigerarten für das Ökosystemmanagement genutzt werden? (ca. 3 Ustd.)	
 Erfassung ökologischer Faktoren und qualitative Erfassung von Arten in einem Areal 	 analysieren die Folgen anthropogener Einwirkung auf ein ausgewähltes Ökosystem und begründen Erhaltungs- oder Renaturierungsmaßnahmen (S7, S8, K11–14). 		
Ökosystemmanage- ment: nachhaltige Nutzung, Bedeutung und Erhalt der Biodiversität	erläutern Konflikte zwischen Biodiversitätsschutz und Umweltnutzung und bewerten Handlungsoptionen unter den Aspekten der Nachhaltigkeit (S8, K12, K14, B2, B5, B10).	Wie können Aspekte der Nachhaltigkeit im Ökosystemmanagement verankert werden? (ca. 4 Ustd.)	

UV GK-Ö3: Stoff- und Energiefluss durch Ökosysteme und der Einfluss des Menschen

Inhaltsfeld 4: Ökologie

Zeitbedarf: ca. 9 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Strukturen und Zusammenhänge in Ökosystemen, Einfluss des Menschen auf

Ökosysteme, Nachhaltigkeit, Biodiversität

Schwerpunkte der Kompetenzbereiche:

• Merkmale wissenschaftlicher Aussagen und Methoden charakterisieren und reflektieren (E)

- Informationen austauschen und wissenschaftlich diskutieren (K)
- Kriteriengeleitet Meinungen bilden und Entscheidungen treffen (B)
- Entscheidungsprozesse und Folgen reflektieren (B)

Beiträge zu den Basiskonzepten

Struktur und Funktion:

Kompartimentierung in Ökosystemebenen

Stoff- und Energieumwandlung: Stoffkreisläufe in Ökosystemen

	Konkretisierte Kompetenzerwartungen		Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
Inhaltliche Aspekte	Schülerinnen und Schüler	Sequenzierung: Leitfragen	
Stoffkreislauf und Energiefluss in einem Ökosystem: Nahrungsnetz	analysieren die Zusammenhänge von Nahrungsbeziehungen, Stoffkreisläufen und Energiefluss in einem Ökosystem (S7, E12, E14, K2, K5).	In welcher Weise stehen Lebensgemeinschaften durch Energiefluss und Stoffkreisläufe mit der abiotischen Umwelt ihres Ökosystems in Verbindung? (ca. 4 Ustd.)	
Stoffkreislauf und Energiefluss in einem Ökosystem: Kohlenstoffkreislauf		Welche Aspekte des Kohlenstoffkreislaufs sind für das Verständnis des Klimawandels relevant? (ca. 2 Ustd.)	
Folgen des anthropogen bedingten Treibhauseffekts	erläutern geografische, zeitliche und soziale Auswirkungen des anthropogen bedingten Treibhaus- effektes und entwickeln Kriterien für die Bewertung von Maßnahmen (S3, E16, K14, B4, B7, B10, B12).	Welchen Einfluss hat der Mensch auf den Treibhauseffekt und mit welchen Maßnahmen kann der Klimawandel abgemildert werden? (ca. 3 Ustd.)	

UV GK-G1: DNA - Speicherung und Expression genetischer Information

Inhaltsfeld 5: Genetik und Evolution

Zeitbedarf: ca. 27 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Molekulargenetische Grundlagen des Lebens

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E)
- Informationen aufbereiten (K)

Beiträge zu den Basiskonzepten

Struktur und Funktion:

Kompartimentierung bei der eukaryotischen Proteinbiosynthese

Stoff- und Energieumwandlung:

Energiebedarf am Beispiel von DNA-Replikation und Proteinbiosynthese

Information und Kommunikation:

Codierung und Decodierung von Information bei der Proteinbiosynthese

Steuerung und Regelung:

Prinzip der Homöostase bei der Regulation der Genaktivität

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
Speicherung und Realisierung genetischer Information: Bau der DNA, semikonservative Replikation, Transkription, Translation	 leiten ausgehend vom Bau der DNA das Grundprinzip der semikonservativen Replikation aus experimentellen Befunden ab (S1, E1, E9, E11, K10). erläutern vergleichend die Realisierung der genetischen Information bei Prokaryoten und Eukaryoten (S2, S5, E12, K5, K6). 	Wie wird die identische Verdopplung der DNA vor einer Zellteilung gewährleistet? (ca. 4 Ustd.) Wie wird die genetische Information der DNA zu Genprodukten bei Prokaryoten umgesetzt? (ca. 6 Ustd.)	
	·	Welche Gemeinsamkeiten und Unterschiede bestehen bei der Proteinbiosynthese von Pro- und Eukaryoten? (ca. 5 Ustd.)	
Zusammenhänge zwischen	erklären die Auswirkungen von Genmutationen auf Genprodukte und	Wie können sich Veränderungen der DNA auf die Genprodukte und den	

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler		Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
genetischem Material, Genprodukten und Merkmal: Genmutationen	Phänotyp (S4, S6, S7, E1, K8).	Phänotyp auswirken? (ca. 5 Ustd.)	
Regulation der Genaktivität bei Eukaryoten: Transkriptionsfakto ren, Modifikationen des Epigenoms durch DNA- Methylierung		Wie wird die Genaktivität bei Eukaryoten gesteuert? (ca. 7 Ustd.)	

UV GK-G2: Humangenetik und Gentherapie

Inhaltsfeld 5: Genetik und Evolution

Zeitbedarf: ca. 8 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Molekulargenetische Grundlagen des Lebens

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Kriteriengeleitet Meinungen bilden und Entscheidungen treffen (B)
- Entscheidungsprozesse und Folgen reflektieren (B)

	Konkretisierte Kompetenzerwartungen		Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
Inhaltliche Aspekte	Schülerinnen und Schüler	Sequenzierung: Leitfragen	
Genetik menschlicher Erkrankungen: Familienstammbäu me, Gentest und Beratung, Gentherapie	 analysieren Familienstammbäume und leiten daraus mögliche Konsequenzen für Gentest und Beratung ab (S4, E3, E11, E15, K14, B8). bewerten Nutzen und Risiken einer Gentherapie beim Menschen (S1, K14, B3, B7–9, B11). 	Welche Bedeutung haben Familienstammbäume für die genetische Beratung betroffener Familien? (ca. 4 Ustd.) Welche ethischen Konflikte treten im Zusammenhang mit gentherapeutischen Behandlungen beim Menschen auf? (ca. 4 Ustd.)	

UV GK-E1: Evolutionsfaktoren und Synthetische Evolutionstheorie

Inhaltsfeld 5: Genetik und Evolution

Zeitbedarf: ca. 13 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Entstehung und Entwicklung des Lebens

Schwerpunkte der Kompetenzbereiche:

- Biologische Sachverhalte betrachten (S)
- Zusammenhänge in lebenden Systemen betrachten (S)
- Informationen aufbereiten (K)

Beiträge zu den Basiskonzepten

Individuelle und evolutive Entwicklung: Selektion bei Prozessen des evolutiven Artwandels

•		Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
•	Biodiversität, populationsgenetis cher Artbegriff Synthetische Evolutionstheorie: Mutation, Rekombination, Selektion, Variation, Gendrift	 begründen die Veränderungen im Genpool einer Population mit der Wirkung der Evolutionsfaktoren (S2, S5, S6, K7). 	Wie lassen sich Veränderungen im Genpool von Populationen erklären? (ca. 5 Ustd.)	
•	Synthetische Evolutionstheorie: adaptiver Wert von Verhalten, Kosten- Nutzen-Analyse, reproduktive Fitness	erläutern die Angepasstheit von Lebewesen auf Basis der reproduktiven Fitness auch unter dem Aspekt einer Kosten- Nutzen-Analyse (S3, S5–7, K7, K8).	Welche Bedeutung hat die reproduktive Fitness für die Entwicklung von Angepasstheiten? (ca. 2 Ustd.) Wie kann die Entwicklung von angepassten Verhaltensweisen erklärt werden? (ca. 2 Ustd.) Wie lässt sich die Entstehung von Sexualdimorphismus erklären? (ca. 2 Ustd.)	

•		Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
	Synthetische Evolutionstheorie: Koevolution	erläutern die Angepasstheit von Lebewesen auf Basis der reproduktiven Fitness auch unter dem Aspekt einer Kosten- Nutzen-Analyse (S3, S5–7, K7, K8).	Welche Prozesse laufen bei der Koevolution ab? (ca. 2 Ustd.)	

UV GK-E2: Stammbäume und Verwandtschaft

Inhaltsfeld 5: Genetik und Evolution

Zeitbedarf: ca. 16 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Entstehung und Entwicklung des Lebens

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Fragestellungen und Hypothesen auf Basis von Beobachtungen und Theorien entwickeln (E)
- Merkmale wissenschaftlicher Aussagen und Methoden charakterisieren und reflektieren (E)
- Informationen aufbereiten (K)

Beiträge zu den Basiskonzepten

Individuelle und evolutive Entwicklung: Selektion bei Prozessen des evolutiven Artwandels

•	Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
•	Stammbäume und Verwandtschaft: Artbildung, Isolation	erklären Prozesse des Artwandels und der Artbildung mithilfe der Synthetischen Evolutionstheorie (S4, S6, S7, E12, K6, K7).	Wie kann es zur Entstehung unterschiedlicher Arten kommen? (ca. 4 Ustd.)	
•	molekular- biologische Homologien, ursprüngliche und abgeleitete Merkmale	 deuten molekularbiologische Homologien im Hinblick auf phylogenetische Verwandtschaft und vergleichen diese mit konvergenten Entwicklungen (S1, S3, E1, E9, E12, K8). 	Welche molekularen Merkmale deuten auf eine phylogenetische Verwandtschaft hin? (ca. 3 Ustd.)	
1		analysieren phylogenetische Stammbäume im Hinblick auf die Verwandtschaft von Lebewesen und die Evolution von Genen (S4, E2, E10, E12, K9, K11).	Wie lässt sich die phylogenetische Verwandtschaft auf verschiedenen Ebenen ermitteln, darstellen und analysieren?	
		 deuten molekularbiologische Homologien im Hinblick auf phylogenetische Verwandtschaft 	(ca. 4 Ustd.) Wie lassen sich konvergente Entwicklungen erkennen?	

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
 Synthetische Evolutionstheorie: Abgrenzung von nicht-naturwissen- schaftlichen Vorstellungen 	und vergleichen diese mit konvergenten Entwicklungen (S1, S3, E1, E9, E12, K8). • begründen die Abgrenzung der Synthetischen Evolutionstheorie gegen nichtnaturwissenschaftliche Positionen und nehmen zu diesen Stellung (E15–E17, K4, K13, B1, B2, B5).	(ca. 3 Ustd.) Wie lässt sich die Synthetische Evolutionstheorie von nichtnaturwissenschaftlichen Vorstellungen abgrenzen? (ca. 2 Ustd.)	

2.2.3 Qualifikationsphase: Leistungskurs

UV LK-N1: Erregungsentstehung und Erregungsleitung an einem Neuron

Inhaltsfeld 2: Neurobiologie

Zeitbedarf: ca. 18 Unterrichtstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Grundlagen der Informationsverarbeitung, Fachliche Verfahren:

Potenzialmessungen, neurophysiologische Verfahren

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E)
- Sachverhalte und Informationen multiperspektivisch beurteilen (B)

Beiträge zu den Basiskonzepten

Stoff- und Energieumwandlung:

Energiebedarf des neuronalen Systems

Steuerung und Regelung:

Positive Rückkopplung bei der Entstehung von Aktionspotenzialen

Individuelle und evolutive Entwicklung:

Zelldifferenzierung am Beispiel der Myelinisierung von Axonen bei Wirbeltieren

	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
Bau und Funktionen von Nervenzellen:	 erläutern am Beispiel von Neuronen den Zusammenhang zwischen Struktur und Funktion (S3, E12). 	Wie ermöglicht die Struktur eines Neurons die Aufnahme und Weitergabe von Informationen?	
Ruhepotenzial	entwickeln theoriegeleitet	(ca. 12 Ustd.)	
	Hypothesen zur Aufrechterhaltung und Beeinflussung des Ruhepotenzials (S4, E3).		
 Bau und Funktionen von Nervenzellen: Aktionspotenzial 	erklären Messwerte von Potenzialänderungen an Axon und Synapse mithilfe der zugrundeliegenden molekularen		
 Neurophysiologi- sche Verfahren, Potenzial- messungen 	Vorgänge und stellen die Anwendung eines zugehörigen neurophysiologischen Verfahrens dar (S3, E14).		

Inhaltliche As	spekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
Bau und Funktionen v Nervenzellen Erregungsleit	1:	vergleichen kriteriengeleitet kontinuierliche und saltatorische Erregungsleitung und wenden die ermittelten Unterschiede auf neurobiologische Fragestellungen an (S6, E1–3).		
Störungen de neuronalen Systems	es	analysieren die Folgen einer neuronalen Störung aus individueller und gesellschaftlicher Perspektive (S3, K1–4, B2, B6).	Wie kann eine Störung des neuronalen Systems die Informationsweitergabe beeinflussen? (ca. 2 Ustd.)	Kontext: Alzheimer oder Chronische Schmerzen
Bau und Funktionen v Nervenzellen primäre und sekundäre Sinneszelle, Rezeptorpote	1:	erläutern das Prinzip der Signaltransduktion bei primären und sekundären Sinneszellen (S2, K6, K10).	Wie werden Reize aufgenommen und zu Signalen umgewandelt? (ca. 4 Ustd.)	

UV LK-N2: Informationsweitergabe über Zellgrenzen

Inhaltsfeld 2: Neurobiologie

Zeitbedarf: ca. 14 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Grundlagen der Informationsverarbeitung, Neuronale Plastizität

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Informationen aufbereiten (K)
- Kriteriengeleitet Meinungen bilden und Entscheidungen treffen (B)

Beiträge zu den Basiskonzepten

Struktur und Funktion:

Schlüssel-Schloss-Prinzip bei Transmitter und Rezeptorprotein

Stoff- und Energieumwandlung:

Energiebedarf des neuronalen Systems

Information und Kommunikation:

Codierung und Decodierung von Information an Synapsen

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
Synapse: Funktion der erregenden chemischen Synapse, neuromuskuläre Synapse	erklären die Erregungsübertragung an einer Synapse und erläutern die Auswirkungen exogener Substanzen (S1, S6, E12, K9, B1, B6).	Wie erfolgt die Erregungsleitung vom Neuron zur nachgeschalteten Zelle und wie kann diese beeinflusst werden? (ca. 8 Ustd.)	
Verrechnung: Funktion einer hemmenden Synapse, räumliche und zeitliche Summation	erklären Messwerte von Potenzialänderungen an Axon und Synapse mithilfe der zugrundeliegenden molekularen Vorgänge und stellen die Anwendung eines zugehörigen neurophysiologischen Verfahrens dar (S3, E14).		
	erläutern die Bedeutung der Verrechnung von Potenzialen für die Erregungsleitung (S2, K11).		
Stoffeinwirkung an Synapsen	nehmen zum Einsatz von exogenen Substanzen zur Schmerzlinderung Stellung (B5–9).		Kontext: Neurotoxine und Drogen
Zelluläre Prozesse	erläutern die synaptische Plastizität auf der zellulären Ebene und leiten	Wie kann Lernen auf neuronaler Ebene erklärt werden?	

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
des Lernens	ihre Bedeutung für den Prozess des Lernens ab (S2, S6, E12, K1).	(ca. 4 Ustd.)	
Hormone: Hormonwirkung, Verschränkung hormoneller und neuronaler Steuerung	beschreiben die Verschränkung von hormoneller und neuronaler Steuerung am Beispiel der Stressreaktion (S2, S6).	Wie wirken neuronales System und Hormonsystem bei der Stressreaktion zusammen? (ca. 2 Ustd.)	

UV LK-S1: Energieumwandlung in lebenden Systemen

Inhaltsfeld 3: Stoffwechselphysiologie

Zeitbedarf: ca. 6 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Grundlegende Zusammenhänge von Stoffwechselwegen

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E)

Beiträge zu den Basiskonzepten

Struktur und Funktion:

Kompartimentierung ermöglicht gegenläufige Stoffwechselprozesse zeitglich in einer Zelle

Stoff- und Energieumwandlung:

Energetische Kopplung der Teilreaktionen von Stoffwechselprozessen

Steuerung und Regelung:

Negative Rückkopplung in mehrstufigen Reaktionswegen des Stoffwechsels

	Konkretisierte Kompetenzerwartungen		Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
Inhaltliche Aspekte	Schülerinnen und Schüler	Sequenzierung: Leitfragen	
 Energieumwandlung Energieentwertung Zusammenhang von aufbauendem und abbauendem Stoffwechsel 	vergleichen den membranbasierten Mechanismus der Energieumwandlung in Mitochondrien und Chloroplasten auch auf Basis von energetischen Modellen (S4, S7, E12, K9, K11).	Wie wandeln Organismen Energie aus der Umgebung in nutzbare Energie um? (ca. 6 Ustd)	
 ATP-ADP-System Stofftransport zwischen den Kompartimenten Redoxreaktionen und Reduktionsäquivalen te 			

UV LK-S2: Glucosestoffwechsel – Energiebereitstellung aus Nährstoffen

Inhaltsfeld 3: Stoffwechselphysiologie

Zeitbedarf: ca. 16 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Grundlegende Zusammenhänge von Stoffwechselwegen

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E)
- Informationen erschließen (K)
- Kriteriengeleitet Meinungen bilden und Entscheidungen treffen (B)

Beiträge zu den Basiskonzepten

Struktur und Funktion:

Kompartimentierung ermöglicht gegenläufige Stoffwechselprozesse zeitglich in einer

Stoff- und Energieumwandlung:

Energetische Kopplung der Teilreaktionen von Stoffwechselprozessen

Steuerung und Regelung:

Negative Rückkopplung in mehrstufigen Reaktionswegen des Stoffwechsels

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
Feinbau Mitochondrium Stoff- und Energiebilanz von Glykolyse, oxidative Decarboxylierung, Tricarbonsäurezyklus und Atmungskette Energetisches Modell der Atmungskette Chemiosmotische ATP-Bildung	stellen die wesentlichen Schritte des abbauenden Glucosestoffwechsels unter aeroben und anaeroben Bedingungen dar und erläutern diese hinsichtlich der Stoff- und Energieumwandlung (S1, S7, K9). vergleichen den membranbasierten Mechanismus der Energieumwandlung in Mitochondrien und Chloroplasten auch auf Basis von energetischen Modellen (S4, S7, E12, K9, K11).	Wie kann die Zelle durch den schrittweisen Abbau von Glucose nutzbare Energie bereitstellen? (ca. 8 Ustd.)	
 Alkoholische Gärung und Milchsäuregärung 	stellen die wesentlichen Schritte des abbauenden Glucosestoffwechsels unter aeroben und anaeroben Bedingungen dar und erläutern diese hinsichtlich der Stoff- und	Welche Bedeutung haben Gärungsprozesse für die Energiegewinnung? (ca. 2 Ustd.)	Kontext: Bier brauen?

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
Stoffwechselregula tion auf Enzymebene	 Energieumwandlung (S1, S7, K9). erklären die regulatorische Wirkung von Enzymen in mehrstufigen Reaktionswegen des Stoffwechsels (S7, E1–4, E11, E12). nehmen zum Konsum eines ausgewählten Nahrungsergänzungsmittels unter stoffwechselphysiologischen Aspekten Stellung (S6, K1–4, B5, B7, B9). 	Wie beeinflussen Nahrungs- ergänzungsmittel als Cofaktoren den Energiestoffwechsel? (ca. 6 Ustd.)	

UV LK-S3: Fotosynthese – Umwandlung von Lichtenergie in nutzbare Energie

Inhaltsfeld 3: Stoffwechselphysiologie

Zeitbedarf: ca. 24 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Grundlegende Zusammenhänge bei Stoffwechselwegen, Aufbauender Stoffwechsel,

Fachliche Verfahren: Chromatografie, Tracer-Methode

Schwerpunkte der Kompetenzbereiche:

- Biologische Sachverhalte betrachten (S)
- Fragestellungen und Hypothesen auf Basis von Beobachtungen und Theorien entwickeln (E)
- Fachspezifische Modelle und Verfahren charakterisieren, auswählen und zur Untersuchung von Sachverhalten nutzen (E)
- Informationen aufbereiten (K)

Beiträge zu den Basiskonzepten

Struktur und Funktion:

Kompartimentierung ermöglicht gegenläufige Stoffwechselprozesse zeitglich in einer Zelle

Stoff- und Energieumwandlung:

Energetische Kopplung der Teilreaktionen von Stoffwechselprozessen

Steuerung und Regelung:

Negative Rückkopplung in mehrstufigen Reaktionswegen des Stoffwechsels

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
 Funktionale Angepasstheiten: Blattaufbau 	erklären funktionale Angepasstheiten an die fotoautotrophe Lebensweise auf verschiedenen Systemebenen (S4–S6, E3, K6–8).	Welche Blattstrukturen sind für die Fotosynthese von Bedeutung? (ca. 4 Ustd.)	
 Funktionale Angepasstheiten: Absorptionsspektru m von Chlorophyll, Wirkungsspektrum, Lichtsammelkompl ex, Feinbau Chloroplast Chromatografie 	Pigmenten (S3, E1, E4, E8, E13).	Welche Funktionen haben Fotosynthesepigmente? (ca. 4 Ustd.)	Chromatographie
Chemiosmotische ATP-BildungEnergetisches	vergleichen den membranbasierten Mechanismus der Energieumwandlung in Mitochondrien und Chloroplasten	Wie erfolgt die Umwandlung von Lichtenergie in chemische Energie? (ca. 12 Ustd.)	

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
Modell der Lichtreaktionen Zusammenhang von Primär- und Sekundärreaktione n, Calvin-Zyklus: Fixierung, Reduktion, Regeneration Tracer-Methode	 auch auf Basis von energetischen Modellen (S4, S7, E12, K9, K11). erläutern den Zusammenhang zwischen Primär- und Sekundärreaktionen der Fotosynthese aus stofflicher und energetischer Sicht (S2, S7, E2, K9). werten durch die Anwendung von Tracermethoden erhaltene Befunde zum Ablauf mehrstufiger Reaktionswege aus (S2, E9, E10, E15). 		
 Abhängigkeit der Fotosyntheserate von abiotischen Faktoren 	analysieren anhand von Daten die Beeinflussung der Fotosyntheserate durch abiotische Faktoren (E4–11).	Von welchen abiotischen Faktoren ist die autotrophe Lebensweise von Pflanzen abhängig? (ca. 4 Ustd.)	

UV LK-S4: Fotosynthese – natürliche und anthropogene Prozessoptimierung

Inhaltsfeld 3: Stoffwechselphysiologie

Zeitbedarf: ca. 8 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Grundlegende Zusammenhänge bei Stoffwechselwegen, Aufbauender Stoffwechsel

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Merkmale wissenschaftlicher Aussagen und Methoden charakterisieren und reflektieren (E)
- Entscheidungsprozesse und Folgen reflektieren (B)

Beiträge zu den Basiskonzepten

Individuelle und evolutive Entwicklung: Zelldifferenzierung bei C₃- und C₄-Pflanzen

ſ		Konkretisierte Kompetenzerwartungen		Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
	Inhaltliche Aspekte	Schülerinnen und Schüler	Sequenzierung: Leitfragen	
	 Funktionale Angepasstheiten: Blattaufbau C₄-Pflanzen Stofftransport zwischen Kompartimenten 	• vergleichen die Sekundärvorgänge bei C ₃ - und C ₄ - Pflanzen und erklären diese mit der Angepasstheit an unterschiedliche Standortfaktoren (S1, S5, S7, K7).	Welche morphologischen und physiologischen Angepasstheiten ermöglichen eine effektive Fotosynthese an heißen und trockenen Standorten? (ca. 4 Ustd.)	
	Zusammenhang von Primär- und Sekundärreaktionen	beurteilen und bewerten multiperspektivisch Zielsetzungen einer biotechnologisch optimierten Fotosynthese im Sinne einer nachhaltigen Entwicklung (E17, K2, K13, B2, B7, B12).	Inwiefern können die Erkenntnisse aus der Fotosyntheseforschung zur Lösung der weltweiten CO ₂ - Problematik beitragen? (ca. 4 Ustd.)	

UV LK-Ö1: Angepasstheiten von Lebewesen an Umweltbedingungen

Inhaltsfeld 4: Ökologie

Zeitbedarf: ca. 22 Unterrichtstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Strukturen und Zusammenhänge in Ökosystemen, Fachliche Verfahren: Erfassung ökologischer Faktoren und quantitative und qualitative Erfassung von Arten in einem Areal

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Fragestellungen und Hypothesen auf Basis von Beobachtungen und Theorien entwickeln (E)
- Fachspezifische Modelle und Verfahren charakterisieren, auswählen und zur Untersuchung von Sachverhalten nutzen (E)
- Informationen aufbereiten (K)

Beiträge zu den Basiskonzepten

Struktur und Funktion:

Kompartimentierung in Ökosystemebenen

Steuerung und Regelung:

Positive und negative Rückkopplung ermöglichen physiologische Toleranz

Individuelle und evolutive Entwicklung:

Angepasstheit an biotische und abiotische Faktoren

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
Biotop und Biozönose: biotische und abiotische Faktoren	erläutern das Zusammenwirken von abiotischen und biotischen Faktoren in einem Ökosystem (S5–7, K8).	Welche Forschungsgebiete und zentrale Fragestellungen bearbeitet die Ökologie? (ca. 3 Ustd.)	
 Einfluss ökologischer Faktoren auf Organismen: Toleranzkurven 	untersuchen auf der Grundlage von Daten die physiologische und ökologische Potenz von Lebewesen (S7, E1–3, E9, E13).	Inwiefern bedingen abiotische Faktoren die Verbreitung von Lebewesen? (ca. 8 Ustd.)	
 Intra- und interspezifische Beziehungen: Konkurrenz, 	analysieren die Wechselwirkungen zwischen Lebewesen hinsichtlich intra- und interspezifischer Beziehungen	Welche Auswirkungen hat die Konkurrenz um Ressourcen an realen Standorten auf die Verbreitung von Arten?	
 Einfluss ökologischer Faktoren auf Organismen: 	 (S4, S7, E9, K6–K8). erläutern die ökologische Nische als Wirkungsgefüge (S4, S7, E17, 	(ca. 7 Ustd.)	

	Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
	ökologische Potenz	K7, K8).		
•	Ökologische Nische			
	Interspezifische Beziehungen: Parasitismus, Symbiose, Räuber- Beute-Beziehungen	analysieren Wechselwirkungen zwischen Lebewesen hinsichtlich intra- oder interspezifischer Beziehungen (S4, S7, E9, K6–K8).	In welcher Hinsicht stellen Organismen selbst einen Umweltfaktor dar? (ca. 6 Ustd.)	

UV LK-Ö2: Wechselwirkungen und Dynamik in Lebensgemeinschaften

Inhaltsfeld 4: Ökologie

Zeitbedarf: ca. 18 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Strukturen und Zusammenhänge in Ökosystemen, Einfluss des Menschen auf Ökosysteme, Nachhaltigkeit, Biodiversität

Schwerpunkte der Kompetenzbereiche:

• Zusammenhänge in lebenden Systemen betrachten (S)

• Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E)

• Informationen austauschen und wissenschaftlich diskutieren (K)

• Sachverhalte und Informationen multiperspektivisch beurteilen (B)

Beiträge zu den Basiskonzepten

Struktur und Funktion:

Kompartimentierung in Ökosystemebenen

Steuerung und Regelung:

Positive und negative Rückkopplung ermöglichen physiologische Toleranz

Individuelle und evolutive Entwicklung:

Angepasstheit an biotische und abiotische Faktoren

•	innaitiicne	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
•	Idealisierte Populations- entwicklung: exponentielles und logistisches Wachstum Fortpflanzungsstr ategien: r- und K- Strategien	interpretieren grafische Darstellungen der Populationsdynamik unter idealisierten und realen Bedingungen auch unter Berücksichtigung von Fortpflanzungsstrategien (S5, E9, E10, E12, K9).	Welche grundlegenden Annahmen gibt es in der Ökologie über die Dynamik von Populationen? (ca. 6 Ustd.)	
n V n u	Dkosystemmanage nent: Ursache- Virkungszusamme hänge, Erhaltungs- ind Renaturierungs- naßnahmen,	 bestimmen Arten in einem ausgewählten Areal und begründen ihr Vorkommen mit dort erfassten ökologischen Faktoren (E3, E4, E7– 9, E15, K8). 	Wie können Zeigerarten für das Ökosystemmanagement genutzt werden? (ca. 4 Ustd.)	Exkursion zur Ökologischen Freilanduntersuchung
ö F q	erfassung kologischer Faktoren und Juantitative und Jualitative	 analysieren die Folgen anthropogener Einwirkung auf ein ausgewähltes Ökosystem und begründen Erhaltungs- oder 		

 Inhaltliche 	Konkretisierte Kompetenzerwartungen		Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
Aspekte	Schülerinnen und Schüler	Sequenzierung: Leitfragen	
Erfassung von Arten in einem Areal	Renaturierungsmaßnahmen (S7, S8, K11–14).		
Ökosystem- management: nachhaltige Nutzung, Bedeutung und Erhalt der Biodiversität Hormonartig wirkende Substanzen in der Umwelt	 erläutern Konflikte zwischen Biodiversitätsschutz und Umweltnutzung und bewerten Handlungsoptionen unter den Aspekten der Nachhaltigkeit (S8, K12, K14, B2, B5, B10). analysieren Schwierigkeiten der Risikobewertung für hormonartig wirkende Substanzen in der Umwelt unter Berücksichtigung verschiedener Interessenslagen (E15, K10, K14, B1, B2, B5). 	Wie können Aspekte der Nachhaltigkeit im Ökosystemmanagement verankert werden? (ca. 6 Ustd.)	

UV LK-Ö3: Stoff- und Energiefluss durch Ökosysteme und der Einfluss des

Menschen

Inhaltsfeld 4: Ökologie

Zeitbedarf: ca. 18 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Strukturen und Zusammenhänge in Ökosystemen,

Einfluss des Menschen auf Ökosysteme, Nachhaltigkeit, Biodiversität

Schwerpunkte der Kompetenzbereiche:

 Merkmale wissenschaftlicher Aussagen und Methoden charakterisieren und reflektieren (E)

- Informationen austauschen und wissenschaftlich diskutieren (K)
- Kriteriengeleitet Meinungen bilden und Entscheidungen treffen (B)
- Entscheidungsprozesse und Folgen reflektieren (B)

Beiträge zu den Basiskonzepten

Struktur und Funktion:

Kompartimentierung in Ökosystemebenen

Stoff- und Energieumwandlung: Stoffkreisläufe in Ökosystemen

•	Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
	Stoffkreislauf und Energiefluss in einem Ökosystem: Nahrungsnetz	analysieren die Zusammenhänge von Nahrungsbeziehungen, Stoffkreisläufen und Energiefluss in einem Ökosystem (S7, E12, E14, K2, K5).	In welcher Weise stehen Lebensgemeinschaften durch Energiefluss und Stoffkreisläufe mit der abiotischen Umwelt ihres Ökosystems in Verbindung? (ca. 5 Ustd.)	
	Stoffkreislauf und Energiefluss in einem Ökosystem: Kohlenstoffkreislauf		Welche Aspekte des Kohlenstoffkreislaufs sind für das Verständnis des Klimawandels relevant? (ca. 3 Ustd.)	
•	Folgen des anthropogen bedingten Treibhauseffekts Ökologischer	erläutern geografische, zeitliche und soziale Auswirkungen des anthropogen bedingten Treibhauseffektes und entwickeln Kriterien für die Bewertung von Maßnahmen (S3, E16, K14, B4,	Welchen Einfluss hat der Mensch auf den Treibhaus- effekt und mit welchen Maßnahmen kann der Klimawandel abgemildert werden?	

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
Fußabdruck	B7, B10, B12). • beurteilen anhand des ökologischen Fußabdrucks den Verbrauch endlicher Ressourcen aus verschiedenen Perspektiven (K13, K14, B8, B10, B12).	(ca. 5 Ustd.)	
 Stickstoffkreislauf Ökosystemmanage ment: Ursache- Wirkungszusamme nhänge, nachhaltige Nutzung 	 analysieren die Folgen anthropogener Einwirkung auf ein ausgewähltes Ökosystem und begründen Erhaltungs- oder Renaturierungsmaßnahmen (S7, S8, K11–14). analysieren die Zusammenhänge von Nahrungsbeziehungen, Stoffkreisläufen und Energiefluss in einem Ökosystem (S7, E12, E14, K2, K5). 	Wie können umfassende Kenntnisse über ökologische Zusammenhänge helfen, Lösungen für ein komplexes Umweltproblem zu entwickeln? (ca. 5 Ustd.)	

UV LK-G1: DNA - Speicherung und Expression genetischer Information

Inhaltsfeld 5: Genetik und Evolution

Zeitbedarf: ca. 28 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Molekulargenetische Grundlagen des Lebens, Fachliche Verfahren: PCR, Gelelektrophorese

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E)
- Informationen aufbereiten (K)

Beiträge zu den Basiskonzepten

Struktur und Funktion:

Kompartimentierung bei der eukaryotischen Proteinbiosynthese

Stoff- und Energieumwandlung:

Energiebedarf am Beispiel von DNA-Replikation und Proteinbiosynthese

Information und Kommunikation:

Codierung und Decodierung von Information bei der Proteinbiosynthese

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
Speicherung und Realisierung genetischer Information: Bau der DNA, semikonservative Replikation, Transkription, Translation	 leiten ausgehend vom Bau der DNA das Grundprinzip der semikonservativen Replikation aus experimentellen Befunden ab (S1, E1, E9, E11, K10). erläutern vergleichend die Realisierung der genetischen Information bei Prokaryoten und Eukaryoten (S2, S5, E12, K5, K6). deuten Ergebnisse von Experimenten zum Ablauf der Proteinbiosynthese (u. a. zur Entschlüsselung des genetischen Codes) (S4, E9, E12, K2, K9). 	Wie wird die identische Verdopplung der DNA vor einer Zellteilung gewährleistet? (ca. 4 Ustd.) Wie wird die genetische Information der DNA zu Genprodukten bei Prokaryoten umgesetzt? (ca. 8 Ustd.)	
	erläutern vergleichend die Realisierung der genetischen Information bei Prokaryoten und Eukaryoten (S2, S5, E12, K5, K6).	Welche Gemeinsamkeiten und Unterschiede bestehen bei der Proteinbiosynthese von Pro- und Eukaryoten?	

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
 Zusammenhänge zwischen genetischem Material, Genprodukten und Merkmal: Genmutationen 	erklären die Auswirkungen von Genmutationen auf Genprodukte und Phänotyp (S4, S6, S7, E1, K8).	(ca. 5 Ustd.) Wie können sich Veränderungen der DNA auf die Genprodukte und den Phänotyp auswirken? (ca. 5 Ustd.)	
PCRGelelektrophorese	erläutern PCR und Gelelektrophorese unter anderem als Verfahren zur Feststellung von Genmutationen (S4, S6, E8–10, K11).	Mit welchen molekularbiologischen Verfahren können zum Beispiel Genmutationen festgestellt werden? (ca. 6 Ustd.)	

UV LK-G2: DNA - Regulation der Genexpression und Krebs

Inhaltsfeld 5: Genetik und Evolution

Zeitbedarf: ca. 20 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Molekulargenetische Grundlagen des Lebens

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E)
- Informationen austauschen und wissenschaftlich diskutieren (K)

Beiträge zu den Basiskonzepten

Steuerung und Regelung:

Prinzip der Homöostase bei der Regulation der Genaktivität

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
Regulation der Genaktivität bei Eukaryoten: Transkriptionsfakto ren, Modifikationen des Epigenoms durch DNA- Methylierung, Histonmodifikation, RNA-Interferenz	 erklären die Regulation der Genaktivität bei Eukaryoten durch den Einfluss von Transkriptionsfaktoren und DNA- Methylierung (S2, S6, E9, K2, K11). erläutern die Genregulation bei Eukaryoten durch RNA-Interferenz und Histon-Modifikation anhand von Modellen (S5, S6, E4, E5, K1, K10). 	Wie wird die Genaktivität bei Eukaryoten gesteuert? (ca. 10 Ustd.)	
Krebs: Krebszellen, Onkogene und Anti-Onkogene, personalisierte Medizin	 begründen Eigenschaften von Krebszellen mit Veränderungen in Proto-Onkogenen und Anti- Onkogenen (Tumor-Suppressor- Genen) (S3, S5, S6, E12). begründen den Einsatz der personalisierten Medizin in der Krebstherapie (S4, S6, E14, K13). 	Wie können zelluläre Faktoren zum ungehemmten Wachstum der Krebszellen führen? (ca. 6 Ustd.) Welche Chancen bietet eine personalisierte Krebstherapie? (ca. 4 Ustd.)	

UV LK-G3: Humangenetik, Gentechnik und Gentherapie

Inhaltsfeld 5: Genetik und Evolution

Zeitbedarf: ca. 18 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Molekulargenetische Grundlagen des Lebens, Fachliche Verfahren: Gentechnik: Veränderung und Einbau von DNA, Gentherapeutische Verfahren

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Kriteriengeleitet Meinungen bilden und Entscheidungen treffen (B)
- Entscheidungsprozesse und Folgen reflektieren (B)

	Konkretisierte Kompetenzerwartungen		Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
Inhaltliche Aspekte	Schülerinnen und Schüler	Sequenzierung: Leitfragen	
Genetik menschlicher Erkrankungen: Familienstammbäu me, Gentest und Beratung, Gentherapie	analysieren Familienstammbäume und leiten daraus mögliche Konsequenzen für Gentest und Beratung ab (S4, E3, E11, E15, K14, B8).	Welche Bedeutung haben Familienstammbäume für die genetische Beratung betroffener Familien? (ca. 4 Ustd.)	
Gentechnik: Veränderung und Einbau von DNA, Gentherapeutische Verfahren	erklären die Herstellung rekombinanter DNA und nehmen zur Nutzung gentechnisch veränderter Organismen Stellung (S1, S8, K4, K13, B2, B3, B9, B12).	Wie wird rekombinante DNA hergestellt und vermehrt? Welche ethischen Konflikte treten bei der Nutzung gentechnisch veränderter Organismen auf? (ca. 8 Ustd.)	
Genetik menschlicher Erkrankungen: Familienstammbäu me, Gentest und Beratung, Gentherapie	bewerten Nutzen und Risiken einer Gentherapie beim Menschen und nehmen zum Einsatz gentherapeutischer Verfahren Stellung (S1, K14, B3, B7–9, B11).	Welche ethischen Konflikte treten im Zusammenhang mit gentherapeutischen Behandlungen beim Menschen auf? (ca. 6 Ustd.)	

UV LK-E1: Evolutionsfaktoren und Synthetische Evolutionstheorie

Inhaltsfeld 5: Genetik und Evolution

Zeitbedarf: ca. 20 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Entstehung und Entwicklung des Lebens

Schwerpunkte der Kompetenzbereiche:

- Biologische Sachverhalte betrachten (S)
- Zusammenhänge in lebenden Systemen betrachten (S)
- Informationen aufbereiten (K)

Beiträge zu den Basiskonzepten

Individuelle und evolutive Entwicklung: Selektion bei Prozessen des evolutiven Artwandels

• lı		Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
• S E M	Biodiversität, populationsgenetis cher Artbegriff Synthetische Evolutionstheorie: Mutation, Rekombination, Selektion, /ariation, Gendrift	 begründen die Veränderungen im Genpool einer Population mit der Wirkung der Evolutionsfaktoren (S2, S5, S6, K7). 	Wie lassen sich Veränderungen im Genpool von Populationen erklären? (ca. 6 Ustd.)	
E V N	Synthetische Evolutionstheorie: adaptiver Wert von /erhalten, Kosten- lutzen-Analyse, eproduktive Fitness	 erläutern die Angepasstheit von Lebewesen auf Basis der reproduktiven Fitness auch unter dem Aspekt einer Kosten-Nutzen- Analyse (S3, S5–7, K7, K8). 	Welche Bedeutung hat die reproduktive Fitness für die Entwicklung von Angepasstheiten? (ca. 2 Ustd.) Wie kann die Entwicklung von angepassten Verhaltensweisen erklärt werden? (ca. 3 Ustd.)	

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
		Wie lässt sich die Entstehung von Sexualdimorphismus erklären? (ca. 3 Ustd.)	
 Sozialverhalten bei Primaten: exogene und endogene Ursachen, Fortpflanzungsverh alten Synthetische Evolutionstheorie: Koevolution 	Fortpflanzungsverhalten von Primaten auch unter dem Aspekt der Fitnessmaximierung (S3, S5, E3, E9,	Wie lassen sich die Paarungsstrategien und Sozialsysteme bei Primaten erklären? (ca. 4 Ustd.) Welche Prozesse laufen bei der Koevolution ab? (ca. 2 Ustd.)	

UV LK-E2: Stammbäume und Verwandtschaft

Inhaltsfeld 5: Genetik und Evolution

Zeitbedarf: ca. 16 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Entstehung und Entwicklung des Lebens

Schwerpunkte der Kompetenzbereiche:

- Zusammenhänge in lebenden Systemen betrachten (S)
- Fragestellungen und Hypothesen auf Basis von Beobachtungen und Theorien entwickeln (E)
- Merkmale wissenschaftlicher Aussagen und Methoden charakterisieren und reflektieren (E)
- Informationen aufbereiten (K)

Beiträge zu den Basiskonzepten

Individuelle und evolutive Entwicklung: Selektion bei Prozessen des evolutiven Artwandels

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
 Stammbäume und Verwandtschaft: Artbildung, Isolation 	erklären Prozesse des Artwandels und der Artbildung mithilfe der Synthetischen Evolutionstheorie (S4, S6, S7, E12, K6, K7).	Wie kann es zur Entstehung unterschiedlicher Arten kommen? (ca. 4 Ustd.)	
 molekularbiologisc he Homologien, ursprüngliche und abgeleitete Merkmale 	deuten molekularbiologische Homologien im Hinblick auf phylogenetische Verwandtschaft und vergleichen diese mit konvergenten Entwicklungen (S1, S3, E1, E9, E12, K8).	Welche molekularen Merkmale deuten auf eine phylogenetische Verwandtschaft hin? (ca. 3 Ustd.)	
	analysieren phylogenetische Stammbäume im Hinblick auf die Verwandtschaft von Lebewesen und die Evolution von Genen (S4, E2, E10, E12, K9, K11).	Wie lässt sich die phylogenetische Verwandtschaft auf verschiedenen Ebenen ermitteln, darstellen und analysieren? (ca. 4 Ustd.)	
	deuten molekularbiologische	Wie lassen sich konvergente	

	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler		Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
	Homologien im Hinblick auf phylogenetische Verwandtschaft und vergleichen diese mit konvergenten Entwicklungen (S1, S3, E1, E9, E12, K8).	Entwicklungen erkennen? (ca. 3 Ustd.)	
Synthetische Evolutionstheorie: Abgrenzung von nicht- naturwissenschaft- lichen Vorstellungen	begründen die Abgrenzung der Synthetischen Evolutionstheorie gegen nicht-naturwissenschaftliche Positionen und nehmen zu diesen Stellung (E15–E17, K4, K13, B1, B2, B5).	Wie lässt sich die Synthetische Evolutionstheorie von nicht- naturwissenschaftlichen Vorstellungen abgrenzen? (ca. 2 Ustd.)	

UV LK-E3: Humanevolution und kulturelle Evolution

Inhaltsfeld 5: Genetik und Evolution

Zeitbedarf: ca.10 Unterrichtsstunden à 45 Minuten

Inhaltliche Schwerpunkte:

Entstehung und Entwicklung des Lebens

Schwerpunkte der Kompetenzbereiche:

- Fragestellungen und Hypothesen auf Basis von Beobachtungen und Theorien entwickeln (E)
- Erkenntnisprozesse und Ergebnisse interpretieren und reflektieren (E)
- Informationen aufbereiten (K)

Inhaltliche Aspekte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	Sequenzierung: Leitfragen	Didaktisch-methodische Anmerkungen, Empfehlungen und Absprachen
Evolution des Menschen und kulturelle Evolution: Ursprung, Fossilgeschichte, Stammbäume und Verbreitung des heutigen Menschen, Werkzeugge- brauch, Sprachentwicklung	 diskutieren wissenschaftliche Befunde und Hypothesen zur Humanevolution auch unter dem Aspekt ihrer Vorläufigkeit (S4, E9, E12, E15, K7, K8). analysieren die Bedeutung der kulturellen Evolution für soziale Lebewesen (E9, E14, K7, K8, B2, B9). 	Wie kann die Evolution des Menschen anhand von morphologischen und molekularen Hinweisen nachvollzogen werden? (ca. 7 Ustd.) Welche Bedeutung hat die kulturelle Evolution für den Menschen und andere soziale Lebewesen? (ca. 3 Ustd.)	

2.3 Grundsätze der fachmethodischen und fachdidaktischen Arbeit

In Absprache mit der Lehrerkonferenz sowie unter Berücksichtigung des Schulprogramms hat die Fachkonferenz Biologie die folgenden fachmethodischen und fachdidaktischen Grundsätze beschlossen. In diesem Zusammenhang beziehen sich die Grundsätze 1 bis 14 auf fächerübergreifende Aspekte, die Grundsätze 15 bis 24 sind fachspezifisch angelegt.

Überfachliche Grundsätze:

- 1.) Geeignete Problemstellungen zeichnen die Ziele des Unterrichts vor und bestimmen die Struktur der Lernprozesse.
- 2.) Inhalt und Anforderungsniveau des Unterrichts entsprechen dem Leistungsvermögen der Lerner.
- 3.) Die Unterrichtsgestaltung ist auf die Ziele und Inhalte abgestimmt.
- 4.) Medien und Arbeitsmittel sind lernendennah gewählt.
- 5.) Die Schülerinnen und Schüler erreichen einen Lernzuwachs.
- 6.) Der Unterricht fördert und fordert eine aktive Teilnahme der Lernenden.
- 7.) Der Unterricht fördert die Zusammenarbeit zwischen den Lernenden und bietet ihnen Möglichkeiten zu eigenen Lösungen.
- 8.) Der Unterricht berücksichtigt die individuellen Lernwege der einzelnen Lerner.
- 9.) Die Lerner erhalten Gelegenheit zu selbstständiger Arbeit und werden dabei unterstützt.
- 10.) Der Unterricht fördert strukturierte und funktionale Einzel-, Partner- bzw. Gruppenarbeit sowie Arbeit in kooperativen Lernformen.
- 11.) Der Unterricht fördert strukturierte und funktionale Arbeit im Plenum.
- 12.) Die Lernumgebung ist vorbereitet; der Ordnungsrahmen wird eingehalten.
- 13.) Die Lehr- und Lernzeit wird intensiv für Unterrichtszwecke genutzt.
- 14.) Es herrscht ein positives pädagogisches Klima im Unterricht.

Fachliche Grundsätze:

- 15.) Der Biologieunterricht orientiert sich an den im gültigen Kernlehrplan ausgewiesenen, obligatorischen Kompetenzen.
- 16.) Der Biologieunterricht ist problemorientiert und an Unterrichtsvorhaben und Kontexten ausgerichtet.
- 17.) Der Biologieunterricht ist lerner- und handlungsorientiert, d.h. im Fokus steht das Erstellen von Lernprodukten durch die Lerner.
- 18.) Der Biologieunterricht ist kumulativ, d.h. er knüpft an die Vorerfahrungen und das Vorwissen der Lernenden an und ermöglicht das Erlernen von neuen Kompetenzen.
- 19.) Der Biologieunterricht fördert vernetzendes Denken und zeigt dazu eine über die verschiedenen Organisationsebenen bestehende Vernetzung von biologischen Konzepten und Prinzipien mithilfe von Basiskonzepten auf.
- 20.) Der Biologieunterricht folgt dem Prinzip der Exemplarität und gibt den Lernenden die Gelegenheit, Strukturen und Gesetzmäßigkeiten möglichst anschaulich in den ausgewählten Problemen zu erkennen.
- 21.) Der Biologieunterricht bietet nach Produkt-Erarbeitungsphasen auch Phasen der Metakognition, in denen zentrale Aspekte von zu erlernenden Kompetenzen reflektiert werden.
- 22.) Der Biologieunterricht ist in seinen Anforderungen und im Hinblick auf die zu erreichenden Kompetenzen für die Lerner transparent.
- 23.) Im Biologieunterricht werden Diagnoseinstrumente zur Feststellung des jeweiligen Kompetenzstandes der Schülerinnen und Schüler durch die Lehrkraft, aber auch durch den Lerner selbst eingesetzt.
- 24.) Der Biologieunterricht bietet immer wieder auch Phasen der Übung.

2.4 Grundsätze der Leistungsbewertung und Leistungsrückmeldung

Auf der Grundlage von § 48 SchulG, § 13 APO-GOSt sowie Kapitel 3 des Kernlehrplans Biologie hat die Fachkonferenz im Einklang mit dem entsprechenden schulbezogenen Konzept die nachfolgenden Grundsätze zur Leistungsbewertung und Leistungsrückmeldung beschlossen. Die nachfolgenden Absprachen stellen die Minimalanforderungen an das lerngruppenübergreifende gemeinsame Handeln der Fachgruppenmitglieder dar. Bezogen auf die einzelne Lerngruppe kommen ergänzend weitere der in den Folgeabschnitten genannten Instrumente der Leistungsüberprüfung zum Einsatz.

2.4.1 Beurteilungsbereich: Sonstige Mitarbeit

Folgende Aspekte sollen bei der Leistungsbewertung der sonstigen Mitarbeit eine Rolle spielen (die Liste ist nicht abschließend):

- Verfügbarkeit biologischen Grundwissens
- Sicherheit und Richtigkeit in der Verwendung der biologischen Fachsprache
- Sicherheit, Eigenständigkeit und Kreativität beim Anwenden fachspezifischer Methoden und Arbeitsweisen (z. B. beim Aufstellen von Hypothesen, bei Planung und Durchführung von Experimenten, beim Umgang mit Modellen, ...)
- Zielgerichtetheit bei der themenbezogenen Auswahl von Informationen und Sorgfalt und Sachrichtigkeit beim Belegen von Quellen
- Sauberkeit, Vollständigkeit und Übersichtlichkeit der Unterrichtsdokumentation, ggf. Portfolio
- Sachrichtigkeit, Klarheit, Strukturiertheit, Fokussierung, Ziel- und Adressatenbezogenheit in mündlichen und schriftlichen Darstellungsformen, auch mediengestützt
- Sachbezogenheit, Fachrichtigkeit sowie Differenziertheit in verschiedenen Kommunikationssituation (z. B. Informationsaustausch, Diskussion, Feedback, ...)
- Reflexions- und Kritikfähigkeit
- Schlüssigkeit und Differenziertheit der Werturteile, auch bei Perspektivwechsel
- Fundiertheit und Eigenständigkeit der Entscheidungsfindung in Dilemmasituationen

2.4.2 Beurteilungsbereich: Klausuren

Einführungsphase:

Im ersten Halbjahr wird eine Klausur à 90 Minuten, im zweiten Halbjahr werden zwei Klausuren à 90 Minuten geschrieben.

Qualifikationsphase:

In der Qualifikationsphase wird die Klausurdauer sukzessive erhöht, um die Schülerinnen und Schüler auf die Anforderungen der schriftlichen Abiturprüfungen vorzubereiten.

Qualifikationsphase 1:

In der Qualifikationsphase 1 werden pro Halbjahr zwei Klausuren geschrieben, wobei die erste Klausur im 2. Halbjahr durch eine Facharbeit ersetzt werden kann. Für die Dauer der Klausuren gelten folgende Zeiten:

	GK	LK
Q1.1	Zwei Klausuren à 90 min	Zwei Klausuren à 135 min
Q1.2	Zwei Klausuren à 135 min	Zwei Klausuren à 180 min

Qualifikationsphase 2.1:

Im ersten Halbjahr der Qualifikationsphase 2 werden zwei Klausuren geschrieben, im GK à 180 min und im LK à 225 min.

Qualifikationsphase 2.2:

Im zweiten Halbjahr der Qualifikationsphase wird eine Klausur geschrieben, die – was den formalen Rahmen angeht – unter Abiturbedingungen gestellt wird.

Die Leistungsbewertung in den Klausuren wird mit Blick auf die schriftliche Abiturprüfung mit Hilfe eines Kriterienrasters ("Erwartungshorizont") durchgeführt. Dieses Kriterienraster wird den korrigierten Klausuren beigelegt und den Schülerinnen und Schülern auf diese Weise transparent gemacht.

Die Zuordnung der Bewertungseinheiten zu den Notenstufen orientiert sich in der Qualifikationsphase am Zuordnungsschema des Zentralabiturs. Die Note ausreichend soll bei Erreichen von ca. 50 % der Bewertungseinheiten erteilt werden. Eine Absenkung der Note kann gemäß § 13 APO-GOSt bei häufigen Verstößen gegen die Sprachrichtigkeit vorgenommen werden.

2.4.3 Grundsätze der Leistungsrückmeldung und Beratung:

Für Präsentationen, Arbeitsprotokolle, Dokumentationen und andere Lernprodukte der sonstigen Mitarbeit erfolgt eine Leistungsrückmeldung, bei der inhalts- und darstellungsbezogene Kriterien berücksichtigt werden. Hier werden zentrale Stärken als auch Optimierungsperspektiven für jede Schülerin bzw. jeden Schüler hervorgehoben.

Die Leistungsrückmeldungen bezogen auf die mündliche Mitarbeit erfolgen auf Nachfrage der Schülerinnen und Schüler außerhalb der Unterrichtszeit, spätestens aber in Form von mündlichem Quartalsfeedback oder Eltern-/Schülersprechtagen. Auch hier erfolgt eine individuelle Beratung im Hinblick auf Stärken und Verbesserungsperspektiven.

Für jede mündliche Abiturprüfung (im 4. Fach oder bei Abweichungs- bzw. Bestehensprüfungen im 1. bis 3. Fach) wird zu den Prüfungsaufgaben ein Kriterienraster für den ersten und zweiten Prüfungsteil vorgelegt.

2.5 Lehr- und Lernmittel

Für den Biologieunterricht in der Sekundarstufe II ist am Lise-Meitner-Gymnasium das Lehrwerk bioskop SII – Gesamtband aus dem Westermann Verlag eingeführt worden. Die Lehrbücher sind sowohl für die Schülerinnen und Schüler, als auch als Fachraumbücher angeschafft worden. Neben diesen Lehrwerken stehen den Schülerinnen und Schülern in der Bibliothek weitere Fachliteratur zur Verfügung.

Weitere Lehr- und Lernmittel wie Modelle, Mikroskope und Präparate, Experimentierkästen, Labormaterialien, etc. finden sich in der umfangreichen Biologie-Sammlung (siehe Kapitel 1).

Alle vier Biologiefachräume sind mit Tafeln und Apple-TV-fähigen Beamern ausgestattet. Darüber hinaus stehen der Biologie zwei Dokumentenkameras zur Verfügung.

Den Fachkolleginnen und Kollegen steht zudem ein breites Repertoire an fachlichen und überfachlichen Materialien über die Kollegiumslizenz von "MeinUnterricht" zur Verfügung. Sie werden zudem ermutigt, die Materialangebote des Ministeriums für Schule und Weiterbildung regelmäßig zu sichten und ggf. in den eigenen Unterricht oder die Arbeit der Fachkonferenz einzubeziehen. Die folgenden Seiten sind dabei hilfreich:

Der Lehrplannavigator:

https://www.schulentwicklung.nrw.de/lehrplaene/lehrplannavigator-sii/gymnasiale-oberstufe/biologie/index.html (zuletzt abgerufen am 17.08.2023)

Die Materialdatenbank:

https://www.schulentwicklung.nrw.de/materialdatenbank/ (zuletzt abgerufen am 17.08.2023)

Die Materialangebote von SINUS-NRW:

https://www.schulentwicklung.nrw.de/sinus/front_content.php?idcat=2556 (zuletzt abgerufen am 17.08.2023)

3 Entscheidungen zu fach- und unterrichtsübergreifenden Fragen

Die Fachkonferenz Biologie hat sich im Rahmen des Schulprogramms für folgende zentrale Schwerpunkte entschieden:

Fortbildungskonzept

Die im Fach Biologie in der gymnasialen Oberstufe unterrichtenden Kolleginnen und Kollegen nehmen nach Möglichkeit regelmäßig an Fortbildungsveranstaltungen der umliegenden Universitäten, Zoos oder der Bezirksregierungen bzw. der Kompetenzteams und des Landesinstitutes QUALIS teil. Die dort bereitgestellten oder entwickelten Materialien werden von den Kolleginnen und Kollegen in den Fachkonferenzsitzungen vorgestellt und der Biologiesammlung zum Einsatz im Unterricht bereitgestellt.

Vorbereitung auf die Erstellung der Facharbeit

Um eine einheitliche Grundlage für die Erstellung und Bewertung der Facharbeiten in der Jahrgangsstufe Q1 zu gewährleisten, findet im Vorfeld des Bearbeitungszeitraums eine fachübergreifende Informationsveranstaltung statt, damit die Schülerinnen und Schüler die Möglichkeiten für Recherchen kennenlernen. Die AG Facharbeit hat schulinterne Richtlinien für die Erstellung einer wissenschaftlichen Arbeit angefertigt, die die unterschiedlichen Arbeitsweisen in den wissenschaftlichen Fachbereichen berücksichtigen.

Exkursionen

Abgesehen vom Abiturhalbjahr (Q 2.2) sollen in der Qualifikationsphase nach Möglichkeit und in Absprache mit der Stufenleitung unterrichtsbegleitende Exkursionen zu Themen des gültigen KLP durchgeführt werden. Aus Sicht der Biologie sind u.a. folgende Exkursionsziele und Themen denkbar:

Inhaltsfeld Genetik und Evolution

- Besuch eines Schülerlabors, z.B.:
- "Baylab plants" der Bayer CropScience AG am Standort Monheim (Isolation, PCR und Gel-Elektrophorese von Rapsgenen)
- Schülerlabor des KölnPUB e.V. (Isolierung von Erbsubstanz (DNA) aus Bakterien und Gemüsen, Analyse von DNA mit Restriktionsenzymen, Polymerasekettenreaktion (PCR), Gelelektrophorese und genetisches Transformationsexperiment, Experimente rund um Southern Blot")
- BayLab Wuppertal: Schülerlabor für Molekularbiologie (DNA-Isolierung aus Zwiebeln und Bakterien, Schneiden der DNA mit Restriktionsenzymen, Nachweis der Restriktionsfragmente durch Gelelektrophorese, Absorptionsspektren von DNA und Proteinen)
- Alfred Krupp Schülerlabor

Inhaltsfeld Ökologie

- Besuch des Umweltbusses "Lumbricus"
- Bestimmung der Gewässergüte (biologische, chemische und strukturelle Parameter in Anlehnung an die EU-Wasserrahmenrichtlinie)
- Untersuchung von Lebensgemeinschaften und ihren unbelebten (abiotischen) Faktoren
- Beobachtungen von Anpassungen an den Lebensraum
- Bestimmung der Standortfaktoren über die Zeigerpflanzen Methode
- Neophyten und Neozoen in NRW
- Frühjahrsblüher im Wald

Inhaltsfeld Genetik und Evolution

- Bestimmung von phylogenetischen Stammbäumen auf der Basis von Schädelmerkmalen in der Abguss-Sammlung
- Neanderthal Museum Mettmann
- Zooschule des Kölner Zoos

4 Qualitätssicherung und Evaluation

Evaluation des schulinternen Curriculums

Das schulinterne Curriculum stellt keine starre Größe dar, sondern ist als "lebendes Dokument" zu betrachten. Dementsprechend werden die Inhalte stetig überprüft, um ggf. Modifikationen vornehmen zu können. Die Fachkonferenz (als professionelle Lerngemeinschaft) trägt durch diesen Prozess zur Qualitätsentwicklung und damit zur Qualitätssicherung des Faches Biologie bei.

Der Prüfmodus erfolgt jährlich. Zu Schuljahresbeginn werden die Erfahrungen des vergangenen Schuljahres in der Fachschaft gesammelt, bewertet und eventuell notwendige Konsequenzen und Handlungsschwerpunkte formuliert.

Die vorliegende Checkliste wird als Instrument einer solchen Bilanzierung genutzt. Sie ermöglicht es, den Ist-Zustand bzw. auch Handlungsbedarf in der fachlichen Arbeit festzustellen und zu dokumentieren, Beschlüsse der Fachkonferenz zur Fachgruppenarbeit in übersichtlicher Form festzuhalten sowie die Durchführung der Beschlüsse zu kontrollieren und zu reflektieren.

	ngen und Planungen der openarbeit	lst-Zustand Auffälligkeiten	Änderungen/ Konsequenzen/ Perspektivplanung	Wer (Verantwortlich)	Bis wann (Zeitrahmen)
Funktion	en				
Fachvorsi	tz				
Stellvertre	tung				
Sammlung					
	stoffbeauftragung		Fristen beachten!		
Sonstige i (im Rahme fächerübergreifer	=unktionen en der schulprogrammatischen nden Schwerpunkte)				
Ressourc	en				
personell	Fachlehrkräfte				
	Lerngruppen				
	Lerngruppengröße				
räumlich	Fachräume				
	Bibliothek				
	Computerraum				
	Raum für				
	Fachteamarbeit				
	Sammlungsraum				
materiell/	Lehrwerke				
sachlich	Fachzeitschriften				
	Ausstattung mit				
	Demonstrationsexperim				
	enten				
	Ausstattung mit Schülerexperimenten				

QUA-LiS.NRW 66

zeitlich	Abstände		
	Fachteamarbeit		
	Dauer Fachteamarbeit		
Modifikat			
	tsvorhaben u.a. im		
	auf die Schwerpunkte		
der Kom	petenzentwicklung		
	sbewertung/		
Einzelins			
Klausurer			
Facharbe			
Kurswah			
Grundkurse			
Leistungs			
Projektkui			
Leistung	sbewertung/Grundsätze		
sonstige N	// ditarbeit		
Klausurer			
Arbeitsso	chwerpunkt(e)		
fachinter			
- kurzfristi	g (Halbjahr)		

QUA-LiS.NRW 67

- mittelfristig (Schuljahr)		
- langfristig		
fachübergreifend		
- kurzfristig		
- mittelfristig		
- langfristig		
Fortbildung		
Fachspezifischer Bedarf		
- kurzfristig		
- mittelfristig		
- langfristig		
Fachübergreifender Bedarf		
- kurzfristig		
- mittelfristig		
- langfristig		

QUA-LiS.NRW 68